A modified zone model on vertical cable tray fire in a confined compartment in the nuclear power plant

2018 ◽  
Vol 36 (6) ◽  
pp. 472-493 ◽  
Author(s):  
Xianjia Huang ◽  
Zhaoying Ren ◽  
He Zhu ◽  
Lan Peng ◽  
Chihonn Cheng ◽  
...  

Room fire with vertical cable tray involves upward flame spread along the cable. Assessing the vertical cable tray fire hazard in confined spaces has been challenging because of the strong coupling between flame spread and heat transfer. Long computing time is required in using sophisticated field model with computational fluid dynamics. Therefore, developing an appropriate zone model in a cable room fire with experimental validation is required for engineering applications. In this study, a vertical cable tray fire in a confined compartment was simulated using a modified zone model along three new areas on having temporal variations of the fire position, upward-spreading cable flame considered as a burning source moving at a constant speed, and validated through full-scale experiments on vertical cable tray fire with two typical cable-line spacing. The modified zone model can predict accurately the upper-layer temperature in the compartment. The accuracy is at least 25% higher than the model with fixed fire position. The measured temperature at different heights started to decrease at different times, which was due to the vertical spreading of the cable flame. For interface height, the relative error and normalized Euclidean distance in the time-varying fire position model can be improved by 50%.

2017 ◽  
Vol 23 (4) ◽  
pp. 455-463 ◽  
Author(s):  
Weigang YAN ◽  
Lin JIANG ◽  
Weiguang AN ◽  
Yang ZHOU ◽  
Jinhua SUN

Buildings have U-shape façade designs for certain purposes such as lighting. However, such designs may lead to a higher fire hazard. In this paper, large scale experiments of upward flame spread over XPS insulation material were conducted to investigate the fire hazard of building’s U-shape façade wall geometry. Comparison to previous labora­tory scale experiments were also presented. Theoretical analysis was performed to reveal the mechanism of the U-shape geometry’s influences. It is found that such geometry design would increase the fire hazard of buildings: flame spread rate and flame height increased with U-shape’s geometrical factor. The results agreed with theoretical analysis. It is ex­pected that the buildings’ U-shape façade wall geometry would greatly benefit flame spread for full scale applications and increase the fire hazard. Thus engineers should be careful with such façade wall designs, especially for residential building designs.


2020 ◽  
Vol 22 ◽  
pp. 100794
Author(s):  
Weiguang An ◽  
Xiangwei Yin ◽  
Minglun Cai ◽  
Yanhua Tang ◽  
Qing Li ◽  
...  

Author(s):  
Biao Zhou ◽  
Kai Wang ◽  
Yanyi Liuchen ◽  
Yuhang Li ◽  
Xukun Sun ◽  
...  

2021 ◽  
Author(s):  
Yunji Gao ◽  
Xiaolong Yang ◽  
Yueyang Luo ◽  
Feng Guo ◽  
Yuchun Zhang ◽  
...  

2018 ◽  
Vol 55 (3) ◽  
pp. 755-771 ◽  
Author(s):  
Yunji Gao ◽  
Guoqing Zhu ◽  
Hui Zhu ◽  
Weiguang An ◽  
Mengwei Yu ◽  
...  

2019 ◽  
Vol 14 ◽  
pp. 100500
Author(s):  
Jinju Zhou ◽  
Guoqing Zhu ◽  
Yunji Gao ◽  
Shuai Gao ◽  
Guoqiang Chai

Author(s):  
Deeksha Gupta ◽  
Edita Bajramovic ◽  
Holger Hoppe ◽  
Antonio Ciriello

Companies involved in the nuclear energy domain, like component and platform manufacturers, system integrators and utilities, have well established yearly trainings on Nuclear Safety Culture. These trainings are typically covered as part of the annual quality assurance-related refresher trainings, introductory courses for new employees, or indoctrinations of temporary staff. Gradually, security awareness trainings are also addressed on a regular basis, typically with a focus on IT, the daily office work, test bay or construction site work environment, and some data protection and privacy-related topics. Due to emerging national nuclear regulation, steadily but surely, specialized cybersecurity trainings are foreseen for integrators and utilities. Beyond these safety, physical security and cybersecurity specific trainings, there is a need to address the joint part of these disciplines, starting from the planning phase of a new Nuclear Power Plant (NPP). The engineers working on safety, physical protection and cybersecurity, must be aware of these interrelations to jointly elaborate a robust I&C architecture (defense-in-depth, design basis events, functional categorization and systems classification) and a resilient security architecture (security by design, security grading, zone model or infrastructure domain, security conduits, forensic readiness, Security Information and Event Management). This paper provides more in-depth justification of when and where additional training is needed, due to the ubiquitous deployment of digital technology in new NPPs. Additionally, for existing NPPs, the benefits of conveying knowledge by training on specific interfaces between the involved disciplines, will be discussed. Furthermore, the paper will address the need of focused training of management stakeholders, as eventually, they must agree on the residual risk. The decision-makers are in charge of facilitating the inter-disciplinary cooperation in parallel to the allocation of resources, e.g. on security certifications of products, extended modeling-based safety and security analyses and security testing coverage.


Sign in / Sign up

Export Citation Format

Share Document