Towards real-time fire data synthesis using numerical simulations

2021 ◽  
pp. 073490412199344
Author(s):  
Wolfram Jahn ◽  
Frane Sazunic ◽  
Carlos Sing-Long

Synthesising data from fire scenarios using fire simulations requires iterative running of these simulations. For real-time synthesising, faster-than-real-time simulations are thus necessary. In this article, different model types are assessed according to their complexity to determine the trade-off between the accuracy of the output and the required computing time. A threshold grid size for real-time computational fluid dynamic simulations is identified, and the implications of simplifying existing field fire models by turning off sub-models are assessed. In addition, a temperature correction for two zone models based on the conservation of energy of the hot layer is introduced, to account for spatial variations of temperature in the near field of the fire. The main conclusions are that real-time fire simulations with spatial resolution are possible and that it is not necessary to solve all fine-scale physics to reproduce temperature measurements accurately. There remains, however, a gap in performance between computational fluid dynamic models and zone models that must be explored to achieve faster-than-real-time fire simulations.

Fuel ◽  
2009 ◽  
Vol 88 (1) ◽  
pp. 9-18 ◽  
Author(s):  
Efim Korytnyi ◽  
Roman Saveliev ◽  
Miron Perelman ◽  
Boris Chudnovsky ◽  
Ezra Bar-Ziv

2002 ◽  
Vol 124 (2) ◽  
pp. 166-175 ◽  
Author(s):  
Mauro Tambasco ◽  
David A. Steinman

Quantification of particle deposition patterns, transit times, and shear exposure is important for computational fluid dynamic (CFD) studies involving respiratory and arterial models. To numerically compute such path-dependent quantities, it is necessary to employ a Lagrangian approach where particles are tracked through a pre-computed velocity field. However, it is difficult to determine in advance whether a particular velocity field is sufficiently resolved for the purposes of tracking particles accurately. Towards this end, we propose the use of volumetric residence time (VRT)—previously defined for 2-D studies of platelet activation and here extended to more physiologically relevant 3-D models—as a means of quantifying whether a volume of Lagrangian fluid elements (LFE’s) seeded uniformly and contiguously at the model inlet remains uniform throughout the flow domain. Such “Lagrangian mass conservation” is shown to be satisfied when VRT=1 throughout the model domain. To demonstrate this novel concept, we computed maps of VRT and particle deposition in 3-D steady flow models of a stenosed carotid bifurcation constructed with one adaptively refined and three nominally uniform finite element meshes of increasing element density. A key finding was that uniform VRT could not be achieved for even the most resolved meshes and densest LFE seeding, suggesting that care should be taken when extracting quantitative information about path-dependent quantities. The VRT maps were found to be useful for identifying regions of a mesh that were under-resolved for such Lagrangian studies, and for guiding the construction of more adequately resolved meshes.


2019 ◽  
Vol 158 (5) ◽  
pp. 1424-1433.e5 ◽  
Author(s):  
W.C. Patrick Lin ◽  
Matthew G. Doyle ◽  
S. Lucy Roche ◽  
Osami Honjo ◽  
Thomas L. Forbes ◽  
...  

2010 ◽  
Vol 34 (7) ◽  
pp. 572-578 ◽  
Author(s):  
James P. Carson ◽  
Daniel R. Einstein ◽  
Kevin R. Minard ◽  
Michelle V. Fanucchi ◽  
Christopher D. Wallis ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document