Demineralized bone matrix-based microcarrier scaffold favors vascularized large bone regeneration in vivo in a rat model

2018 ◽  
Vol 33 (2) ◽  
pp. 182-195 ◽  
Author(s):  
Qiannan Li ◽  
Wenjie Zhang ◽  
Guangdong Zhou ◽  
Yilin Cao ◽  
Wei Liu ◽  
...  

Insufficient neo-vascularization of in vivo implanted cell-seeded scaffold remains a major bottleneck for clinical translation of engineered bone formation. Demineralized bone matrix is an ideal bone scaffold for bone engineering due to its structural and biochemical components similar to those of native bone. We hypothesized that the microcarrier form of demineralized bone matrix favors ingrowth of vessels and bone regeneration upon in vivo implantation. In this study, a rat model of femoral vessel pedicle-based bone engineering was employed by filling the demineralized bone matrix scaffolds inside a silicone chamber that surrounded the vessel pedicles, and to compare the efficiency of vascularized bone regeneration between microcarrier demineralized bone matrix and block demineralized bone matrix. The results showed that bone marrow stem cells better adhered to microcarrier demineralized bone matrix and produced more extracellular matrices during in vitro culture. After in vivo implantation, microcarrier demineralized bone matrix seeded with bone marrow stem cells formed relatively more bone tissue than block demineralized bone matrix counterpart at three months upon histological examination. Furthermore, micro-computed tomography three-dimensional reconstruction showed that microcarrier demineralized bone matrix group regenerate significantly better and more bone tissues than block demineralized bone matrix both qualitatively and quantitatively (p < 0.05). Moreover, micro-computed tomography reconstructed angiographic images also demonstrated significantly enhanced tissue vascularization in microcarrier demineralized bone matrix group than in block demineralized bone matrix group both qualitatively and quantitatively (p < 0.05). Anti-CD31 immunohistochemical staining of (micro-) vessels and semi-quantitative analysis also evidenced enhanced vascularization of regenerated bone in microcarrier demineralized bone matrix group than in block demineralized bone matrix group (p < 0.05). In conclusion, the microcarrier form of demineralized bone matrix is an ideal bone regenerative scaffold due to its advantages of osteoinductivity and vascular induction, two essentials for in vivo bone regeneration.

2013 ◽  
Vol 24 (6) ◽  
pp. 2135-2140 ◽  
Author(s):  
Shima Tavakol ◽  
Ahad Khoshzaban ◽  
Mahmoud Azami ◽  
Iraj Ragerdi Kashani ◽  
Hani Tavakol ◽  
...  

Symmetry ◽  
2019 ◽  
Vol 11 (4) ◽  
pp. 532 ◽  
Author(s):  
Parrilla-Almansa ◽  
González-Bermúdez ◽  
Sánchez-Sánchez ◽  
Meseguer-Olmo ◽  
Martínez-Cáceres ◽  
...  

The aim of the study is to determine the existing correlation between high-resolution 3D imaging technique obtained through Micro Computed Tomography (mCT) and histological-histomorphometric images to determine in vivo bone osteogenic behavior of bioceramic scaffolds. A Ca-Si-P scaffold ceramic doped and non-doped (control) with a natural demineralized bone matrix (DBM) were implanted in rabbit tibias for 1, 3, and 5 months. A progressive disorganization and disintegration of scaffolds and bone neoformation occurs, from the periphery to the center of the implants, without any differences between histomorphometric and radiological analysis. However, significant differences (p < 0.05) between DMB-doped and non-doped materials where only detected through mathematical analysis of mCT. In this way, average attenuation coefficient for DMB-doped decreased from 0.99 ± 0.23 Hounsfield Unit (HU) (3 months) to 0.86 ± 0.32 HU (5 months). Average values for non-doped decreased from 0.86 ± 0.25 HU (3 months) to 0.66 ± 0.33 HU. Combination of radiological analysis and mathematical mCT seems to provide an adequate in vivo analysis of bone-implanted biomaterials after surgery, obtaining similar results to the one provided by histomorphometric analysis. Mathematical analysis of Computed Tomography (CT) would allow the conducting of long-term duration in vivo studies, without the need for animal sacrifice, and the subsequent reduction in variability.


1989 ◽  
Vol 7 (1) ◽  
pp. 22-27 ◽  
Author(s):  
Zachary B. Friedenberg ◽  
Carl T. Brighton ◽  
James D. Michelson ◽  
John Bednar ◽  
Richard Schmidt ◽  
...  

2018 ◽  
Vol 8 (5) ◽  
pp. 716-722
Author(s):  
Guolin Liu ◽  
Lingxiao Wang ◽  
Lei Hu ◽  
Changying Liu ◽  
Luyuan Jin ◽  
...  

2016 ◽  
Vol 4 (11) ◽  
pp. 1691-1703 ◽  
Author(s):  
Paolo Giannoni ◽  
Federico Villa ◽  
Cinzia Cordazzo ◽  
Luciano Zardi ◽  
Paolo Fattori ◽  
...  

Three different heterologous substitutes for bone regeneration, manufactured with equine-derived cortical powder, cancellous chips and demineralized bone matrix granules, were compared in vitro and in vivo.


2016 ◽  
Vol 8 (41) ◽  
pp. 27511-27522 ◽  
Author(s):  
Jiajia Shi ◽  
Jie Sun ◽  
Wen Zhang ◽  
Hui Liang ◽  
Qin Shi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document