Predicting the remaining useful life of a cutting tool during turning titanium metal matrix composites

Author(s):  
Yasser Shaban ◽  
Soumaya Yacout

A cutting tool’s remaining useful life is what is left for a tool, at a particular working age, in order to reach a pre-specified level of acceptable performance. The prediction of remaining useful life is crucial in order to decrease the scrapped products or the unnecessary interruption of the machining process in order to replace the tool. Consequently, the accuracy of its estimation affects the cost of machining, particularly when the product’s material is very expensive. In this article, the remaining useful lifes of 25 identical tools are estimated during turning titanium metal matrix composites. These composites are extensively used in aerospace and aviation industries. Accurate estimation of the remaining useful life has positive impact on product quality in terms of producing the required specifications. In this article, experimental data are gathered, and the proportional hazard model are used in order to model the tool’s reliability and hazard functions with EXAKT software and then the remaining useful life curves are developed for different machining conditions, namely, the cutting speed and the feed rate. The use of the proportional hazard model is validated using a normalization process and Kolmogorov–Smirnov test. The proportionality assumption is verified using log minus log plot. The final result is the development of the curves that represent the tools’ reliability and the remaining useful life for different machining conditions of the titanium metal matrix composites.

Author(s):  
Yasser Shaban ◽  
Maryam Aramesh ◽  
Soumaya Yacout ◽  
Marek Balazinski ◽  
Helmi Attia ◽  
...  

Little practical results are known about the cutting tool optimal replacement time, specifically for machining of composite materials. Due to the fact that tool failure represents about 20% of machine down-time, and due to the high cost of machining, in particular when the work piece’s material is very expensive, optimization of tool replacement time is thus fundamental. Finding the optimal replacement time has also positive impact on product quality in terms of dimensions and surface finish. In this article, two new contributions to research on tool replacement are introduced. First, tool replacement mathematical models are proposed. These models are used in order to find the optimal time to tool replacement when the tool is used under variable machining conditions, namely, the cutting speed and the feed rate. Proportional hazards models are used to find an optimal replacement function. Second, this model is obtained during turning titanium metal matrix composites. These composites are a new generation of materials which have proven to be viable in various industrial fields such as biomedical and aerospace, and they are very expensive. Experimental data are obtained and used in order to develop and to validate the proportional hazards models, which are then used to find the optimal replacement conditions.


Author(s):  
Ming-Yi You ◽  
Lin Li ◽  
Guang Meng ◽  
Jun Ni

Since pioneering work in 1972, the proportional hazard model (PHM) has been widely studied for survival analysis in the area of medicine. Recently, applying the PHM in the area of reliability engineering attracts significant research attentions. In this paper, a two-zone PHM is investigated to predict equipment remaining useful life (RUL) based on the practice that the equipment lifecycle could be divided into two zones: a stable zone and a degradation zone. Results from the numerical experiment illustrate that RUL prediction by applying the proposed two-zone PHM is more accurate and reliable than prediction using the traditional PHM for the entire lifecycle. In practice, this improvement is crucial for real-time maintenance decision making to prevent equipment from catastrophic failures.


2009 ◽  
Vol 52 (4) ◽  
pp. 322-328 ◽  
Author(s):  
I. Montealegre-Melendez ◽  
E. Neubauer ◽  
H. Danninger

Sign in / Sign up

Export Citation Format

Share Document