Combined numerical and experimental study to predict the forming limit curve of boron steel sheets at elevated temperatures

Author(s):  
Nguyen Duc-Toan ◽  
Kim Young-Suk

The aim of this study involved evaluating and predicting forming limit curves of boron steel 22MnB5 sheet at elevated temperatures. A finite-element method simulation was adopted based on ductile fracture criteria and simple experiments at elevated temperatures. First, tensile experimental data and ductile fracture criterions of Johnson–Cook and ductile void growth models were input to ABAQUS/Explicit software to predict and compare the same with fracture occurrence in experiments performed via Hecker’s punch stretching tests at room temperature. Subsequently, punch stretching test data at room temperature were added to correct the fracture strain locus in the space of the stress triaxiality and the equivalent strain following the ductile void growth model. After confirming the accuracy of the forming limit curve prediction at room temperature, fracture strain loci at high temperatures using ductile void growth model were determined based on the average ratio between the fracture equivalent plastic strains at room temperature as well as higher temperatures. Finally, Hecker’s punch stretching tests were numerically simulated to predict forming limit curve(s) of boron steel 22MnB5 sheet at high temperatures.

2011 ◽  
Vol 474-476 ◽  
pp. 993-997 ◽  
Author(s):  
Jia Yue Li ◽  
Jun Ying Min ◽  
Kai Yu Qin ◽  
Jian Pin Lin ◽  
Fu Qiang Liu ◽  
...  

To study the effects of temperature and thickness on forming limits of boron steel 22MnB5, Nakajima tests have been performed for the steels with thickness of 1.0mm and 1.4mm at 600°C and 700°C, respectively. The forming limit curve (FLC) of the steel at 700°C is higher than that at 600°C, and the FLC of the steel with 1.4mm is higher than that of the steel with 1.0mm. With increasing the forming temperature, the strain rate sensitive exponent m increases, and it results in a longer Swift’s diffuse instability phase and greater limit strains. The effect of thickness on yield path is different from the case at room temperature, due to the half angle of pointed Vertex, θ0, which increases with increasing of the thickness, and then the limit strains increase.


2015 ◽  
Vol 766-767 ◽  
pp. 416-421
Author(s):  
S. Vijayananth ◽  
V. Jayaseelan ◽  
G. Shivasubbramanian

Formability of a material is defined as its ability to deform into desired shape without being fracture. There will always be a need for formability tests, a larger number of tests have been used in an effort to measure the formability of sheet materials. Aluminium Alloy 6061 is a magnesium and silicon alloy of aluminium. It is also called as marine material as it has high corrosion resistance to seawater. In this paper Formability test of AA6061 sheet is done by Forming Limit Diagram (FLD) Analysis. FLD or Forming Limit Curve (FLC) for the forming processes of AA6061 sheets is obtained by Experimental method and FEM. Experimental method involves Deep drawing test of the sheet and ANSYS software is used for FEM.


2007 ◽  
Vol 344 ◽  
pp. 511-518 ◽  
Author(s):  
Markus Bambach ◽  
M. Todorova ◽  
Gerhard Hirt

Asymmetric incremental sheet forming (AISF) is a relatively new manufacturing process for the production of low volumes of sheet metal parts. Forming is accomplished by the CNC controlled movements of a simple ball-headed tool that follows a 3D trajectory to gradually shape the sheet metal blank. Due to the local plastic deformation under the tool, there is almost no draw-in from the flange region to avoid thinning in the forming zone. As a consequence, sheet thinning limits the amount of bearable deformation, and thus the range of possible applications. Much attention has been given to the maximum strains that can be attained in AISF. Several authors have found that the forming limits are considerably higher than those obtained using a Nakazima test and that the forming limit curve is approximately a straight line (mostly having a slope of -1) in the stretching region of the FLD. Based on these findings they conclude that the “conventional” forming limit curves cannot be used for AISF and propose dedicated tests to record forming limit diagrams for AISF. Up to now, there is no standardised test and no evaluation procedure for the determination of FLCs for AISF. In the present paper, we start with an analysis of the range of strain states and strain paths that are covered by the various tests that can be found in the literature. This is accomplished by means of on-line deformation measurements using a stereovision system. From these measurements, necking and fracture limits are derived. It is found that the fracture limits can be described consistently by a straight line with negative slope. The necking limits seem to be highly dependent on the test shapes and forming parameters. It is concluded that standardisation in both testing conditions and the evaluation procedures is necessary, and that a forming limit curve does not seem to be an appropriate tool to predict the feasibility of a given part design.


2021 ◽  
Vol 0 (0) ◽  
pp. 1-12
Author(s):  
CHEN Ren-hong ◽  
◽  
◽  
LIANG Jin ◽  
YE Mei-tu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document