Sheet cathode design and experimental study on the electrochemical machining of deep narrow slots in TB6 titanium alloy

Author(s):  
Feng Wang ◽  
Jianshe Zhao ◽  
Yanming Lv ◽  
Xiuqing Fu ◽  
Min Kang ◽  
...  

TB6 titanium alloy is extensively applied in lightweight vehicles, biomedicine, and other domains because of its high specific strength, excellent fracture toughness, and excellent corrosion resistance. Electrochemical machining is a non-contact processing technology that has significant advantages in processing materials that are difficult to cut, such as cemented carbide, high-temperature alloys, and titanium alloys. To improve the consistency of deep narrow slots fabricated in TB6 titanium alloy via electrochemical machining, a sheet cathode design and experimental studies were carried out in this work. Based on a unidirectional fluid–structure coupling simulation, the influence of the stiffener arrangement on the cathode rigidity and flow-velocity distribution was studied. Furthermore, by modifying the geometry of the stiffener, the cathode deformation was significantly reduced, and flow-velocity uniformity at the cathode outlet was improved. The influence of a superimposed low-frequency oscillation on the gap distribution and the profile error of a deep narrow slot was investigated experimentally. The results revealed that when an applied voltage of 24 V, an oscillation frequency of 50 Hz, and an amplitude of 0.05 mm were adopted, a highly homogeneous deep narrow slot with an entrance gap of 0.24 mm and a side gap of 0.33 mm was machined into the TB6 titanium alloy.

2017 ◽  
Vol 233 ◽  
pp. 190-200 ◽  
Author(s):  
Weidong Liu ◽  
Sansan Ao ◽  
Yang Li ◽  
Zuming Liu ◽  
Hui Zhang ◽  
...  

2016 ◽  
Vol 90 (5-8) ◽  
pp. 2397-2409 ◽  
Author(s):  
Weidong Liu ◽  
Sansan Ao ◽  
Yang Li ◽  
Zuming Liu ◽  
Zhengming Wang ◽  
...  

2019 ◽  
Vol 85 (1(I)) ◽  
pp. 64-71 ◽  
Author(s):  
M. M. Gadenin

The cycle configuration at two-frequency loading regimes depends on the number of parameters including the absolute values of the frequencies and amplitudes of the low-frequency and high-frequency loads added during this mode, the ratio of their frequencies and amplitudes, as well as the phase shift between these harmonic components, the latter having a significant effect only with a small ratio of frequencies. Presence of such two-frequency regimes or service loading conditions for parts of machines and structures schematized by them can significantly reduce their endurance. Using the results of experimental studies of changes in the endurance of a two-frequency loading of specimens of cyclically stable, cyclically softened and cyclically hardened steels under rigid conditions we have shown that decrease in the endurance under the aforementioned conditions depends on the ratio of frequencies and amplitudes of operation low-frequency low-cycle and high-frequency vibration stresses, and, moreover, the higher the level of the ratios of amplitudes and frequencies of those stacked harmonic processes of loading the greater the effect. It is shown that estimation of such a decrease in the endurance compared to a single frequency loading equal in the total stress (strains) amplitudes can be carried out using an exponential expression coupling those endurances through a parameter (reduction factor) containing the ratio of frequencies and amplitudes of operation cyclic loads and characteristic of the material. The reduction is illustrated by a set of calculation-experimental curves on the corresponding diagrams for each of the considered types of materials and compared with the experimental data.


1995 ◽  
Vol 50 (17) ◽  
pp. 2679-2689 ◽  
Author(s):  
Yuming Zhou ◽  
Jeffrey J. Derby

2016 ◽  
Vol 29 (1) ◽  
pp. 274-282 ◽  
Author(s):  
Xuezhen Chen ◽  
Zhengyang Xu ◽  
Dong Zhu ◽  
Zhongdong Fang ◽  
Di Zhu

2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
Peng Guo ◽  
Bo Deng ◽  
Xiang Lan ◽  
Kaili Zhang ◽  
Hongyuan Li ◽  
...  

This paper presents a water level sensing method using guided waves of A0 and quasi-Scholte modes. Theoretical, numerical, and experimental studies are performed to investigate the properties of both the A0 and quasi-Scholte modes. The comparative study of dispersion curves reveals that the plate with one side in water supports a quasi-Scholte mode besides Lamb modes. In addition, group velocities of A0 and quasi-Scholte modes are different. It is also found that the low-frequency A0 mode propagating in a free plate can convert to the quasi-Scholte mode when the plate has one side in water. Based on the velocity difference and mode conversion, a water level sensing method is developed. For the proof of concept, a laboratory experiment using a pitch-catch configuration with two piezoelectric transducers is designed for sensing water level in a steel vessel. The experimental results show that the travelling time between the two transducers linearly increases with the increase of water level and agree well with the theoretical predictions.


2017 ◽  
Vol 21 (3) ◽  
pp. 1119-1132 ◽  
Author(s):  
Gui-Lan Yu ◽  
Hong-Wei Miao

The vibration isolation performance of a PC sandwich plate with periodic hollow tube core is investigated experimentally and numerically. The experiment results reveal that there exist vibration attenuation zones in acceleration frequency responses which can be improved by increasing the number of periods or tuning some structure parameters. The presence of soft fillers shifts the attenuation zone to lower frequencies and enhances the capability of vibration isolation to some extent. Dispersion relations and acceleration frequency responses are calculated by finite element method using COMSOL MULTIPHYSICS. The attenuation zones obtained by experiments fit well with that by simulations, and both are consistent with the band gap in dispersion relations. The numerical and experimental studies in the present paper show that this PC sandwich plate exhibits a good performance on vibration isolation in low frequency ranges, which will provide some useful references for relevant research and potential applications in vibration propagation manipulations.


10.12737/7168 ◽  
2015 ◽  
Vol 1 (1) ◽  
pp. 4-22 ◽  
Author(s):  
Анатолий Леонович ◽  
Anatoliy Leonovich ◽  
Виталий Мазур ◽  
Vitaliy Mazur ◽  
Даниил Козлов ◽  
...  

This article presents the review of experimental and theoretical studies on ultra-low-frequency MHD oscillations of the geomagnetic tail. We consider the Kelvin–Helmholtz instability at the magnetopause, oscillations with a discrete spectrum in the “magic frequencies” range, the ballooning instability of coupled Alfvén and slow magnetosonic waves, and “flapping” oscillations of the current sheet of the geomagnetic tail. Over the last decade, observations from THEMIS, CLUSTER and Double Star satellites have been of great importance for experimental studies. The use of several spacecraft allows us to study the structure of MHD oscillations with high spatial resolution. Due to this, we can make a detailed comparison between theoretical results and those obtained from multi-spacecraft studies. To make such comparisons in theoretical studies, in turn, we have to use the numerical models closest to the real magnetosphere.


Sign in / Sign up

Export Citation Format

Share Document