vibration isolation performance
Recently Published Documents


TOTAL DOCUMENTS

107
(FIVE YEARS 52)

H-INDEX

8
(FIVE YEARS 3)

2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Wei Zhang ◽  
Xiaoping Li ◽  
Jian Li ◽  
Xiqiu Li

A typical quasi-zero-stiffness (QZS) vibration isolator consisting of a vertical spring and two oblique springs has been widely researched on its static and dynamic characteristics. A general criterion for determining structural parameters of QZS isolator is to achieve low nondimensional stiffness around the equilibrium position. However, lower nondimensional stiffness of linear isolator means lower isolation frequency, which may be invalid on QZS isolator. Because there is an implicit relationship between geometric parameter and stiffness ratio of QZS isolator, this study presents an improved optimization criterion for determining the optimal structural parameters of the typical QZS isolator. The optimization criterion is that the QZS isolator has the maximum displacement range around the equilibrium position without exceeding given natural frequency, rather than given nondimensional stiffness. The results show that isolator with these optimal parameters can achieve lower stiffness around the equilibrium position and better vibration isolation performance. Furthermore, an extended QZS isolator consisting of vertical spring with fixed stiffness and prestressed oblique springs is discussed to further improve stiffness characteristic. Better stiffness performance can be obtained when the prestressed oblique springs have softening stiffness and the exponent of the nonlinear stiffness is 2. Considering the existence of friction in practical application, the influence of friction on both static and dynamic characteristics is investigated. The analysis reveals that friction has little influence on its stiffness characteristic around the static equilibrium position and friction damping produced by friction affects the response amplitude and resonant frequency in dynamics.


2021 ◽  
Vol 11 (23) ◽  
pp. 11167
Author(s):  
Kun Pan ◽  
Jieyu Ding ◽  
Wei Zhang ◽  
Shengdong Zhao

This paper mainly studies the vibration isolation of negative Poisson’s ratio structure in the honeycomb base of ships. Based on the structure of the negative Poisson’s ratio structure, different laying methods and different cell structure are used to construct the honeycomb base with the re-entrant hexagonal cell, the mathematical expression of Poisson’s ratio of a single re-entrant hexagonal cell structure is obtained through theoretical analysis. The negative Poisson ratio and relative density could be got by changing the angle and side thickness of the cell structure. Based on the different energy band of the re-entrant hexagonal cell structure, the different negative Poisson’s ratio re-entrant hexagonal honeycomb base was got, the energy band and the frequency response curve of the ship base are analyzed by COMSOL software. The energy band diagram and the frequency response of the structure are obtained to analyze the vibration isolation performance of the honeycomb base. By comparing the experimental results, the following conclusions can be gotten: (1) Compared with the traditional base, the negative Poisson’s ratio base has better vibration isolation effect on external excitation; (2) Different laying method and Poisson ratios can get different isolation effect. The combined base structure can provide better isolation effect to the external excitation in a larger frequency band; (3) By adding different mass blocks to the inner or peripheral angles of the basic re-entrant hexagonal cell, the vibration isolation performance of the structure can be changed to better.


2021 ◽  
pp. 095745652110557
Author(s):  
Yong Chen ◽  
Mian Jiang ◽  
Daoyong Wang ◽  
Kuanfang He

The mass variances of materials in buckets and the movements of excavation arms greatly impact powertrain vibration transmissibility in hydraulic excavators under working conditions. If the influence of mass variation among bucket contents and excavation arm motions on vibration transmissibility is not considered, then only limited improvements can be made to vibration isolation performance. In this paper, vibration transmissibility suppression for hydraulic excavators operating under working conditions were studied via multi-objective optimization for stiffness coefficients of suspension elements (SEs). First, the rigid-flexible coupling model of a hydraulic excavator with a flexible base was built using ADAMS software. In the model, the stiffness coefficients of the SEs were the targeted variables with constrained conditions, while the multi-objectives for optimization were the vibration transmissibility and energy decoupling rates of the powertrain. Vibration isolation transmissibility (VIT) of the mounting system was compared between situations with non-optimized and optimized stiffness coefficients. Finally, the amplitude changes of the resultant SE support forces were used to illustrate the effects of powertrain vibration transmissibility suppression. We found that the average value of VITs increases significantly during the optimization process for the stiffness coefficients of SEs, which indicates that the mounting system has better vibration isolation performance. The smaller amplitudes of the resultant support force illustrate the improvements to the performance of vibration transmissibility suppression of the powertrain via the optimization process.


Aerospace ◽  
2021 ◽  
Vol 8 (11) ◽  
pp. 333
Author(s):  
Weichao Chi ◽  
He Ma ◽  
Caihua Wang ◽  
Tianyu Zhao

The Stewart platform, a classical mechanism proposed as the parallel operation apparatus of robots, is widely used for vibration isolation in various fields. In this paper, a design integrating both small attitude control and vibration isolation for high-precision payloads on board satellites is proposed. Our design is based on a Stewart platform equipped with voice-coil motors (VCM) to provide control force over the mechanism. The coupling terms in the dynamic equations of the legs are removed as the total disturbance by the linear active disturbance rejection control (LADRC). Attitude maneuver and vibration isolation performance is verified by numerical simulations.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Yujie Shen ◽  
Mengqi Jia ◽  
Kai Yang ◽  
Zhong Chen ◽  
Long Chen

This paper concerns the optimal problem of the vehicle ISD (inerter-spring-damper) suspension based on the asymmetric-damping effect. In order to explore the benefits of the asymmetric damping, a quarter car model of the four-element ISD suspension is built by considering the symmetric and asymmetric reciprocating damping factors. The parameters of the proposed vehicle ISD suspension with symmetric-damping and asymmetric-damping features are optimized by means of the genetic algorithm in single-objective scenario and multiobjective scenario, respectively. The dynamic performances are analyzed through simulations in time and frequency domains, and the impacts of the compression and tensile damping on the body acceleration, the suspension working space, and the dynamic tire load are discussed. Results indicate that, compared with the conventional passive suspension, the proposed ISD suspensions manifest excellent vibration isolation performance, and the asymmetric reciprocating damping ISD suspension even showcases extra improving space of the dynamic performances except for the dynamic tire load in the impulse input condition. It seems that the dynamic performance of the vehicle ISD suspension will be much superior when considering the asymmetric reciprocating damping factors.


2021 ◽  
Vol 263 (3) ◽  
pp. 3011-3022
Author(s):  
Jing Bian ◽  
Xingjian Jing ◽  
Yishen Tian

Passive vibration isolation is always preferable in many engineering practices. To this aim, an innovative, compact, and passive vibration isolation mount is studied in this paper. The novel mount is adjustable to different payloads due to a special oblique and tunable stiffness mechanism, and of high vibration isolation performance with a wider quasi-zero-stiffness range due to the deliberate employment of negative stiffness of the X-shaped structure. The X-shaped structure has been well studied recently due to its excellent nonlinear stiffness and damping properties. In this study, by using of the negative stiffness property within the X-shaped structure, the X-shaped mount (X-mount) can have an obviously larger vibration displacement range which maintains the quasi-zero-stiffness property. A special oblique spring is thus introduced such that the overall equivalent stiffness can be much easily adjusted. Systematic parametric study is conducted to reveal the critical design parameters and their relationship with vibration isolation performance. A prototype and experimental validations are implemented to validate the theoretical results. It is believed that the X-mount would provide an innovative technical upgrade to many existing vibration isolation mounts in various engineering practices and it could also be the first prototyped mount which can offer adjustable quasi-zero stiffness conveniently.


Sign in / Sign up

Export Citation Format

Share Document