side gap
Recently Published Documents


TOTAL DOCUMENTS

36
(FIVE YEARS 11)

H-INDEX

6
(FIVE YEARS 2)

Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7714
Author(s):  
Yong Yang ◽  
Yufeng Wang ◽  
Yujie Gui ◽  
Wenwu Zhang

The fabrication of deep microgrooves has become an issue that needs to be addressed with the introduction of difficult-to-cut materials and ever-increasing stringent quality requirements. However, both laser machining and electrochemical machining could not fulfill the requirements of high machining efficiency and precision with good surface quality. In this paper, laser and shaped tube electrochemical milling (Laser-STEM) were initially employed to fabricate microgrooves. The mechanisms of the Laser-STEM process were studied theoretically and experimentally. With the developed experimental setup, the influences of laser power and voltage on the width, depth and bottom surface roughness of the fabricated microgrooves were studied. Results have shown a laser power of less than 6 W could enhance the electrochemical machining rate without forming a deep kerf at the bottom during Laser-STEM. The machining accuracy or localization of electrochemicals could be improved with laser assistance, whilst the laser with a high-power density would deteriorate the surface roughness of the bottom machining area. Experimental results have proved that both the machining efficiency and the machining precision can be enhanced by synchronous laser-assisted STEM, compared with that of pure electrochemical milling. The machining side gap was decreased by 62.5% while using a laser power of 6 W in Laser-STEM. The laser-assistance effects were beneficial to reduce the surface roughness of the microgrooves machined by Laser-STEM, with the proper voltage. A laser power of 3 W was preferred to obtain the smallest surface roughness value. Additionally, the machining efficiency of layer-by-layer Laser-STEM can be improved utilizing a constant layer thickness (CLT) mode, while fabricating microgrooves with a high aspect ratio. Finally, microgrooves with a width of 1.79 mm, a depth of 6.49 mm and a surface roughness of 2.5 μm were successfully fabricated.


Author(s):  
Aniruddha Sanyal ◽  
Amit Dhiman

An analysis has been carried out to understand the consequences of side-by-side gap-ratio on thermal buoyancy-assisted two-dimensional flow past a pair of heated circular cylinders for a dominant viscous flow field. This is implemented through studies at Reynolds number ( Re) ranging from 5 to 40, Prandtl number ( Pr) 0.7, gap-ratio ( T/D) 1.5 to 4 and Richardson number ( Ri) 0 to 1. An ANSYS-based incompressible flow solver is used with Boussinesq approximation to account for density variations in the momentum equation. One can realize features like the steady-separated and steady-unseparated flow on varying flow and thermal parameters. Unlike streamlines, non-interacting isotherms are non-existent in the current numerical framework. The influence of gap-ratio on enhancement in Nusselt number ( Nu) is the best realized at T/D = 1.5 and buoyancy-aided effects play a dominant role for enhancement in Nu at diffusion and/or viscous-dominant conditions occurring at Re = 5. Correlations are developed to quantify the impact of T/D, Re, and Richardson number Ri on Nu. For the first time, Nu’s correlation based on varying side-by-side gap-ratio has been stated in a single expression. Finally, a comparison for the heat transfer enhancement/reduction in Nu under a similar numerical framework is provided with cases of high-Pr flow and/or different relatable flow arrangements for circular and square cylinders.


2021 ◽  
Vol 410 ◽  
pp. 21-27
Author(s):  
Andrey A. Gruzdev ◽  
Yuriy A. Morgunov ◽  
Boris P. Saushkin

This paper considers some theoretical provisions on the impact ultrasonic mechanical vibrations have on the throughput of an electroerosive piercing of small-diameter holes. The approximate estimates confirm the hypothesis that the cumulative jets mechanism makes the greatest contribution to the intensification of a multiphase medium flow in the interelectrode gap. A model is proposed for a periodic localization of the cavitation region in the bottom part of the annular side gap. It allows explaining the occurrence of a multiphase medium flow during hole processing.


Micromachines ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 950
Author(s):  
Zhaolong Li ◽  
Bingren Cao ◽  
Ye Dai

Electrical parameters of the power supply are significant factors affecting the accuracy and stability of the electrochemical machining (ECM). However, the electric field, flow velocity and temperature in the machining area are difficult to measure directly under the influence of the power supply. Therefore, taking the film cooling hole as an example, the multi-physics coupling simulation analysis of the ECM is performed on the basis of Faraday’s law and fluid heat transfer mathematical model. The machining characteristics of the direct current and pulse ECM are compared through simulation. The results show that the pulse ECM improves the distribution of temperature and current density in the machining area. The period has little effect on the temperature, current density and side removal rate. The side removal rate increases with the increase of the duty ratio and lateral gap. Increasing of the duty ratio and decreasing of the lateral gap will increase the temperature and current density. Increasing the inlet pressure accelerates the frequency of renewal of heat and electrolysis products, which can reduce the single side gap. The experience of the ECM holes verifies the results of the simulation. The accuracy and stability of the ECM of holes are enhanced by optimizing the duty ratio, lateral gap and inlet pressure.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Peng Zhang ◽  
Jie Tan ◽  
Haitao Liu ◽  
Gang Yang ◽  
Chunyi Cui

In order to mitigate the seismic response of a cable-stayed bridge, a new type damping device named asymmetric pounding tuned mass damper (APTMD) is developed in this paper on the basis of the traditional symmetric pounding tuned mass damper. The novel APTMD has three parameters to be determined: the left-side gap, the right-side gap, and the frequency ratio. A numerical model of the APTMD damping system is established with consideration of both the computational efficiency and accuracy to enable the parametric optimization of the damper. The numerical model is based on a simplified model of the cable-stayed bridge and a nonlinear pounding force model. The genetic algorithm is utilized for the optimization of the damper. Afterwards, the cable-stayed bridge is subjected to 20 recorded ground motions to evaluate the vibration control effectiveness of the APTMD. Four systems are considered: (1) without dampers; (2) with a TMD; (3) with a PTMD; and (4) with an APTMD. Time history analysis reveals the following: (1) those dampers can all effectively suppress the vibration of the bridge and (2) the vibration control effectiveness of the APTMD is slightly better than the TMD and the PTMD.


Materials ◽  
2020 ◽  
Vol 13 (15) ◽  
pp. 3392 ◽  
Author(s):  
Magdalena Machno

The properties of the Inconel 718 superalloy are used in the manufacturing of aircraft components; its properties, including high hardness and toughness, cause machining difficulties when using the conventional method. To circumvent this, non-conventional techniques are used, among which electrical discharge machining (EDM) is a good alternative. However, the nature of removing material using the EDM process causes the thermophysical properties of Inconel 718 to hinder its machinability; thus, a more extensive analysis of the influence of these properties on the EDM process, and a machinability analysis of this material in a wider range, using more process parameters, are required. In this study, we investigated the drilling of micro-holes into the Inconel 718 superalloy using the EDM process. An experiment was conducted to evaluate the impact of five process parameters with a wide range of values (open voltage, time of the impulse, current amplitude, the inlet dielectric fluid pressure, and tube electrode rotation) on the process’s performance (drilling speed, linear tool wear, the side gap thickness, and the aspect ratio of holes). The analysis shows that the thermal conductivity of this superalloy significantly influences the effective drilling of holes. The combination of a higher current amplitude (I ≥ 3.99 A) with an extended pulse time (ton ≥ 550 µs) can provide a satisfactory hole accuracy (side gap thickness ≤ 100 µm), homogeneity of the hole entrance edge without re-solidified material, and a depth-to-diameter ratio of about 19. Obtaining a high dimensional shape accuracy of holes has an enormous effect on their usability in the structure of the components in the aviation industry.


Materials ◽  
2020 ◽  
Vol 13 (6) ◽  
pp. 1476 ◽  
Author(s):  
Magdalena Machno ◽  
Rafał Bogucki ◽  
Maciej Szkoda ◽  
Wojciech Bizoń

Nickel-based superalloys are being increasingly applied to manufacture components in the aviation industry. The materials are classified as difficult-to-machine using conventional methods. Nowadays, manufacturing techniques are needed to drill high aspect ratio holes of above 20:1 (depth-to-diameter ratio) in these materials. One of the most effective methods of making high-aspect-ratio holes is electrical discharge drilling (EDD). While drilling high aspect ratio holes, a crucial issue is the flushing of the gap area and the evacuation of the erosion products. The use of deionized water as the dielectric fluid in the EDD offers a considerable potential. This paper includes an analysis of the influence of the machining parameters (pulse time, current amplitude and discharge voltage) on the process performance (drilling speed, linear tool wear, taper angle, hole’s aspect ratio, side gap thickness), during the EDD with the use of deionized water in the Inconel 718 alloy. The obtained through holes were subjected to the extended analysis. The impact of the initial working fluid temperature and pressure on the conditions of the flow through the electrode channel was also subjected to the analysis. The deionized water properties were changed by applying an initial temperature. Based on the results of an analysis of the previous research, the EDD of the through holes was performed for a pre-set initial temperature (~313.15 °K) and initial pressure of the working fluid (8 MPa) and selected process parameters. An analysis of the results indicates increasing of hole’s aspect ratio by about 15% (above 30), decreasing the side gap thickness by about 40% and enhanced surface integrity.


2020 ◽  
Vol 142 (4) ◽  
Author(s):  
Weiwen Xia ◽  
Yaou Zhang ◽  
Mo Chen ◽  
Wansheng Zhao

Abstract Fast electrical discharge drilling is broadly used to manufacture small holes on molds, dies, filters, and automobile and aerospace components. Breakout is the event when the tool electrode reaches the opposite surface of the workpiece. When a breakout happens, the machining efficiency drops sharply and the process becomes unstable. To gain a deep understanding of the breakout process, this paper observed the gap phenomena before and after the breakout with cameras through a quartz glass flake. Experiments were conducted on the workpiece tilted to 45 deg. From the observation, it was found that the deformation of the electrode was not negligible. The electrode would vibrate or shake before and after the breakout. Side-gap sparks were common in the process, and even more were observed after the breakout. The fluid flow in the discharge gap and the side gap did not vanish immediately when a breakout happened and could still evacuate debris for a short period. The debris gradually accumulated as the fluid flow in the gap vanished. A series of simulations were conducted to study the fluid flow and debris movement after the breakout. And simulations were also performed to find the influence on electrode vibration of high-pressure flush fluid and discharge location. The results of simulations agreed well with the observed phenomena. From the observation and simulation results, the deformation or vibration of the electrode and the accumulation of debris were found to be the main factors that led to the low machining efficiency after the breakout.


Author(s):  
Feng Wang ◽  
Jianshe Zhao ◽  
Yanming Lv ◽  
Xiuqing Fu ◽  
Min Kang ◽  
...  

TB6 titanium alloy is extensively applied in lightweight vehicles, biomedicine, and other domains because of its high specific strength, excellent fracture toughness, and excellent corrosion resistance. Electrochemical machining is a non-contact processing technology that has significant advantages in processing materials that are difficult to cut, such as cemented carbide, high-temperature alloys, and titanium alloys. To improve the consistency of deep narrow slots fabricated in TB6 titanium alloy via electrochemical machining, a sheet cathode design and experimental studies were carried out in this work. Based on a unidirectional fluid–structure coupling simulation, the influence of the stiffener arrangement on the cathode rigidity and flow-velocity distribution was studied. Furthermore, by modifying the geometry of the stiffener, the cathode deformation was significantly reduced, and flow-velocity uniformity at the cathode outlet was improved. The influence of a superimposed low-frequency oscillation on the gap distribution and the profile error of a deep narrow slot was investigated experimentally. The results revealed that when an applied voltage of 24 V, an oscillation frequency of 50 Hz, and an amplitude of 0.05 mm were adopted, a highly homogeneous deep narrow slot with an entrance gap of 0.24 mm and a side gap of 0.33 mm was machined into the TB6 titanium alloy.


2019 ◽  
Vol 19 (3) ◽  
pp. 231-241
Author(s):  
E. G. Martynova ◽  
S. A. Velichko ◽  
A. V. Martynov

Introduction. Nowadays, vacuum-type dough dividers are used in industries with a production volume of up to 4,000 loaves per day. In the dough divider operation, due to wear of the working surfaces of the piston, chamber, and drum, the gap between them goes beyond the value equal to 50 microns, which provides vacuum in the suction chamber. As a result, the suction process becomes unstable; the dough divider disturbs the weight accuracy of bakery goods. Repair of such equipment is carried out mainly through a full or partial replacement of worn parts and assemblies with new ones. To increase their durability, there is a need to develop a new highly efficient technology with the restoration of worn part surfaces using the welding and surfacing methods.Materials and Methods. A new technique of determining the number of objects for research using the “STATISTICA” program is presented. Wear surfaces of the vacuum dough divider parts are determined.Research Results. Micrometric studies of the dough divider components were carried out. They showed the presence of appreciable size distortions due to the local wear of the working surfaces. In this case, a side gap between the suction chamber and the main piston and between the drum and the suction chamber is 6 times higher than the permissible one, and a vertical gap between the division box and the piston exceeds the permissible gap by more than 10 times. Wear of the working surfaces of the dough divider parts is local in nature, while the range of values is as follows: for the main piston, it is 10-200 microns; for the gaging piston, it is 250- 900 microns; for the suction chamber and division box, it is 300-400 microns; for the drum surfaces, it is 280-300 microns.Discussion and Conclusions. The conducted micrometric studies showed the presence of appreciable size distortions due to the local wear of the working surfaces. Based on the results obtained, it can be argued that the most productive and economically viable technique for the restoration of worn surfaces of dough divider parts is, for example, the electrospark machining.


Sign in / Sign up

Export Citation Format

Share Document