Numerical and scalability analysis of an unstructured Cartesian flow solver

Author(s):  
Y H Yau ◽  
A Badarudin ◽  
P A Rubini

This article describes a systematic approach in building a flow solver for large eddy simulation (LES). Finite volume discretizations of the filtered, incompressible, Navier–Stokes equations were explained. The theory progresses to the description of the step-by-step process (mainly in increasing functionality or capability) in developing a three-dimensional, unstructured Cartesian mesh, parallel code after evaluating numerical factors, and available options carried out earlier. This was followed by a presentation of results produced from the simulations of laminar flow, related to the validation of the source codes, which indicates that the flow solver is behaving satisfactorily.

2018 ◽  
Vol 12 (02) ◽  
pp. 1840007 ◽  
Author(s):  
Tso-Ren Wu ◽  
Thi-Hong-Nhi Vuong ◽  
Jun-Wei Lin ◽  
Chia-Ren Chu ◽  
Chung-Yue Wang

Energy dissipation mechamism is the key to study tsunami hazard mitigation. Numerical method is adopted to study the interaction between bores and square cylinders. The model solves the three-dimensional Navier–Stokes equations with Large-Eddy Simulation turbulence model. The Volume-of-fluid (VOF) method is used to track the complex free surface. We focus the investigation on the effect of cylinder height on the flow field. The results show that the turbulence diffusion is the main mechanism for energy dissipation. The flow patterns are significantly different within and beyond the cylinder array. The taller cylinders cause smaller velocity magnitude in the downstream area. In addition, a larger value of velocity magnitude and vorticity near the bottom is identified in the tall-cylinder case. These unique featuers make different dissipation rates.


2018 ◽  
Author(s):  
Jiajun Chen ◽  
Yue Sun ◽  
Hang Zhang ◽  
Dakui Feng ◽  
Zhiguo Zhang

Mixing in pipe junctions can play an important role in exciting force and distribution of flow in pipe network. This paper investigated the cross pipe junction and proposed an improved plan, Y-shaped pipe junction. The numerical study of a three-dimensional pipe junction was performed for calculation and improved understanding of flow feature in pipe. The filtered Navier–Stokes equations were used to perform the large-eddy simulation of the unsteady incompressible flow in pipe. From the analysis of these results, it clearly appears that the vortex strength and velocity non-uniformity of centerline, can be reduced by Y-shaped junction. The Y-shaped junction not only has better flow characteristic, but also reduces head loss and exciting force. The results of the three-dimensional improvement analysis of junction can be used in the design of pipe network for industry.


2014 ◽  
Vol 136 (6) ◽  
Author(s):  
B. A. Younis ◽  
A. Abrishamchi

The paper reports on the prediction of the turbulent flow field around a three-dimensional, surface mounted, square-sectioned cylinder at Reynolds numbers in the range 104–105. The effects of turbulence are accounted for in two different ways: by performing large-eddy simulations (LES) with a Smagorinsky model for the subgrid-scale motions and by solving the unsteady form of the Reynolds-averaged Navier–Stokes equations (URANS) together with a turbulence model to determine the resulting Reynolds stresses. The turbulence model used is a two-equation, eddy-viscosity closure that incorporates a term designed to account for the interactions between the organized mean-flow periodicity and the random turbulent motions. Comparisons with experimental data show that the two approaches yield results that are generally comparable and in good accord with the experimental data. The main conclusion of this work is that the URANS approach, which is considerably less demanding in terms of computer resources than LES, can reliably be used for the prediction of unsteady separated flows provided that the effects of organized mean-flow unsteadiness on the turbulence are properly accounted for in the turbulence model.


2000 ◽  
Vol 123 (3) ◽  
pp. 680-685 ◽  
Author(s):  
L. He ◽  
K. Sato

A three-dimensional incompressible viscous flow solver of the thin-layer Navier-Stokes equations was developed for the unsteady turbomachinery flow computations. The solution algorithm for the unsteady flows combines the dual time stepping technique with the artificial compressibility approach for solving the incompressible unsteady flow governing equations. For time accurate calculations, subiterations are introduced by marching the equations in the pseudo-time to fully recover the incompressible continuity equation at each real time step, accelerated with a multi-grid technique. Computations of test cases show satisfactory agreements with corresponding theoretical and experimental results, demonstrating the validity and applicability of the present method to unsteady incompressible turbomachinery flows.


2000 ◽  
Author(s):  
M. Tadjfar ◽  
T. Yamaguchi ◽  
R. Himeno

Abstract Peristaltic pumping in a cylindrical tube is simulated. The unsteady, three-dimensional, incompressible Navier-Stokes equations are solved numerically. A flow solver written for parallel architecture and capable of dealing with moving boundaries and moving grids is used. The solver uses a second-order in time and third-order upwind finite volume method for solving time-accurate incompressible flows utilizing pseudo-compressibility technique. In this study, the flow of an axisymmetric “Wine-glass” shaped, single, peristaltic wave is analyzed. The wall wave, quickly, establishes a pressure wave in the flow which pumps fluid in the tube as it moves down the tube. The pressure wave, established by the contracting geometric wall wave, grows and diffuses into the upstream and downstream direction in time due to the action of viscosity.


2011 ◽  
Vol 243-249 ◽  
pp. 1578-1582
Author(s):  
Xu Yong Ying ◽  
Fu You Xu ◽  
Zhe Zhang ◽  
Yong Gang Tan

In this study, aerodynamic forces on a bridge pylon are investigated by three-dimensional computational fluid dynamics using Large eddy simulation (LES) technology. The main objective is to identify the wind load parameters of the pylon and examine the accuracy of LES model applied to the bluff-body flows. The numerical results were compared with the available wind tunnel test results. Also, a comparison between using LES and Reynolds averaged Navier-Stokes equations with the RNG model have been made. It is found that the LES model competes the RNG model in accuracy for predictions of aerodynamic forces on the pylon.


Sign in / Sign up

Export Citation Format

Share Document