scholarly journals Three-Dimensional Turbulent Vortex Shedding From a Surface-Mounted Square Cylinder: Predictions With Large-Eddy Simulations and URANS

2014 ◽  
Vol 136 (6) ◽  
Author(s):  
B. A. Younis ◽  
A. Abrishamchi

The paper reports on the prediction of the turbulent flow field around a three-dimensional, surface mounted, square-sectioned cylinder at Reynolds numbers in the range 104–105. The effects of turbulence are accounted for in two different ways: by performing large-eddy simulations (LES) with a Smagorinsky model for the subgrid-scale motions and by solving the unsteady form of the Reynolds-averaged Navier–Stokes equations (URANS) together with a turbulence model to determine the resulting Reynolds stresses. The turbulence model used is a two-equation, eddy-viscosity closure that incorporates a term designed to account for the interactions between the organized mean-flow periodicity and the random turbulent motions. Comparisons with experimental data show that the two approaches yield results that are generally comparable and in good accord with the experimental data. The main conclusion of this work is that the URANS approach, which is considerably less demanding in terms of computer resources than LES, can reliably be used for the prediction of unsteady separated flows provided that the effects of organized mean-flow unsteadiness on the turbulence are properly accounted for in the turbulence model.

Author(s):  
Fahua Gu ◽  
Mark R. Anderson

The design of turbomachinery has been focusing on the improvement of the machine efficiency and the reduction of the design cost. This paper presents an integrated design system to create the machine geometry and to predict the machine performance at different levels of approximation, including one-dimensional design and analysis, quasi-three-dimensional-(blade-to-blade, throughflow) and full-three-dimensional-steady-state CFD analysis. One of the most important components, the Reynolds-averaged Navier-Stokes solver, is described in detail. It originated from the Dawes solver with numerous enhancements. They include the use of the low speed pre-conditioned full Navier-Stokes equations, the addition of the Spalart-Allmaras turbulence model and an improvement of wall functions related with the turbulence model. The latest upwind scheme, AUSM, has been implemented too. The Dawes code has been rewritten into a multi-block solver for O, C, and H grids. This paper provides some examples to evaluate the effect of grid topology on the machine performance prediction.


Recent advances in the mathematical theory of the Navier-Stokes equations have produced new insight in the mathematical theory of turbulence. In particular, the study of the attractor for the Navier-Stokes equations produced the first connection between two approaches to turbulence that seemed far apart, namely the conventional approach of Kolmogorov and the dynamical systems theory approach. Similarly the study of the approximation of the attractor in connection with the newly introduced concept of approximate inertial manifolds has produced a new approach to large eddy simulations and the study of the interaction of small and large eddies in turbulent flows. Our aim in this article is to survey and describe some of the new results concerning the functional properties of the Navier-Stokes equations and to discuss their relevance to turbulence.


Author(s):  
Hayder Schneider ◽  
Dominic von Terzi ◽  
Hans-Jo¨rg Bauer ◽  
Wolfgang Rodi

Reynolds-Averaged Navier-Stokes (RANS) calculations and Large-Eddy Simulations (LES) of the flow in two asymmetric three-dimensional diffusers were performed. The numerical setup was chosen to be in compliance with previous experiments. The aim of the present study is to find the least expensive method to compute reliably and accurately the impact of geometric sensitivity on the flow. RANS calculations fail to predict both the extent and location of the three-dimensional separation bubble. In contrast, LES is able to determine the amount of reverse flow and the pressure coefficient within the accuracy of experimental data.


Author(s):  
S M Fraser ◽  
Y Zhang

Three-dimensional turbulent flow through the impeller passage of a model mixed-flow pump has been simulated by solving the Navier-Stokes equations with an improved κ-ɛ model. The standard κ-ɛ model was found to be unsatisfactory for solving the off-design impeller flow and a converged solution could not be obtained at 49 per cent design flowrate. After careful analysis, it was decided to modify the standard κ-ɛ model by including the extra rates of strain due to the acceleration of impeller rotation and geometrical curvature and removing the mathematical ill-posedness between the mean flow turbulence modelling and the logarithmic wall function.


2018 ◽  
Author(s):  
Luis A. Martínez-Tossas ◽  
Jennifer Annoni ◽  
Paul A. Fleming ◽  
Matthew J. Churchfield

Abstract. When a wind turbine is yawed, the shape of the wake changes and a curled wake profile is generated. The curled wake has drawn a lot of interest because of its aerodynamic complexity and applicability to wind farm controls. The main mechanism for the creation of the curled wake has been identified in the literature as a collection of vortices that are shed from the rotor plane when the turbine is yawed. This work extends that idea by using aerodynamic concepts to develop a control-oriented model for the curled wake based on approximations to the Navier-Stokes equations. The model is tested and compared to large-eddy simulations using actuator disk and line models. The model is able to capture the curling mechanism for a turbine under uniform inflow and in the case of a neutral atmospheric boundary layer. The model is then tested inside the FLOw Redirection and Induction in Steady State framework and provides excellent agreement with power predictions for cases with two and three turbines in a row.


Author(s):  
Vijay K. Garg ◽  
Raymond E. Gaugler

In order to study the effect of film cooling on the flow and heat transfer characteristics of actual turbine blades, a three-dimensional Navier-Stokes code has been developed. An existing code (Chima and Yokota, 1990) has been modified for the purpose. The code is an explicit finite difference code with an algebraic turbulence model. The thin-layer Navier-Stokes equations are solved using a general body-fitted coordinate system. The effects of film cooling have been incorporated into the code in the form of appropriate boundary conditions at the hole locations on the blade surface. Each hole exit is represented by several control volumes, thus providing an ability to study the effect of hole shape on the film-cooling characteristics. Comparison with experimental data is fair. Further validation of the code is required, however, and in this respect, there is an urgent need for detailed experimental data on actual turbine blades.


2021 ◽  
Vol 158 (A3) ◽  
Author(s):  
A Lavrov ◽  
C Guedes Soares

The laminar flow around heaving axisymmetric and three-dimensional cylinders with damping plates is numerically studied for various Keulegan-Carpenter numbers. The Navier-Stokes equations are solved using OpenFOAM, which is applied to the flow on a moving mesh. For processing of results the semi-empirical Morison equation is used. Calculations are conducted for one cylinder, one cylinder with one disk, one cylinder with two disks, and one cylinder with one pentagonal plate. The calculated values are compared against experimental data.


Author(s):  
Y H Yau ◽  
A Badarudin ◽  
P A Rubini

This article describes a systematic approach in building a flow solver for large eddy simulation (LES). Finite volume discretizations of the filtered, incompressible, Navier–Stokes equations were explained. The theory progresses to the description of the step-by-step process (mainly in increasing functionality or capability) in developing a three-dimensional, unstructured Cartesian mesh, parallel code after evaluating numerical factors, and available options carried out earlier. This was followed by a presentation of results produced from the simulations of laminar flow, related to the validation of the source codes, which indicates that the flow solver is behaving satisfactorily.


2005 ◽  
Vol 127 (4) ◽  
pp. 806-815 ◽  
Author(s):  
J. U. Schlüter ◽  
X. Wu ◽  
S. Kim ◽  
S. Shankaran ◽  
J. J. Alonso ◽  
...  

Full-scale numerical prediction of the aerothermal flow in gas turbine engines are currently limited by high computational costs. The approach presented here intends the use of different specialized flow solvers based on the Reynolds-averaged Navier-Stokes equations as well as large-eddy simulations for different parts of the flow domain, running simultaneously and exchanging information at the interfaces. This study documents the development of the interface and proves its accuracy and efficiency with simple test cases. Furthermore, its application to a turbomachinery application is demonstrated.


2013 ◽  
Vol 37 (3) ◽  
pp. 283-292 ◽  
Author(s):  
Dae-Woong Kim ◽  
Jin-Hyuk Kim ◽  
Kwang-Yong Kim

Aerodynamic performance of a transonic axial compressor with a casing groove combined with injection has been investigated in this work. Three-dimensional Reynolds-averaged Navier–Stokes equations with k-ε turbulence model are discretized by finite volume approximations and solved on hexahedral grids for the flow analyses. For parametric study, the front and rear lengths and height of the casing groove are selected as the geometric parameters and are changed with constant injection to investigate their effects on the stall margin and peak adiabatic efficiency. As a result of the parametric study, the maximum stall margin and peak adiabatic efficiency are found to be obtained in the axial compressor having 70% height of the reference groove. The results show that the application of the casing groove combined with injection to an axial compressor is effective for the simultaneous improvement of both the stall margin and peak adiabatic efficiency of the compressor.


Sign in / Sign up

Export Citation Format

Share Document