Finite element modelling of substrate thermal distortion in direct laser additive manufacture of an aero-engine component

Author(s):  
S Marimuthu ◽  
D Clark ◽  
J Allen ◽  
AM Kamara ◽  
P Mativenga ◽  
...  

The shape complexity of aerospace components is continuously increasing, which encourages researchers to further refine their manufacturing processes. Among such processes, blown powder direct laser deposition process is becoming an economical and energy efficient alternative to the conventional machining process. However, depending on their magnitudes, the distortion and residual stress generated during direct laser deposition process can affect the performance and geometric tolerances of manufactured components. This article reports an investigation carried out using the finite element analysis method to predict the distortion generated in an aero-engine component produced by the direct laser deposition process. The computation of the temperature induced during the direct laser deposition process and the corresponding distortion on the component was accomplished through a three-dimensional thermo-structural finite element analysis model. The model was validated against measured distortion values of the real component produced by direct laser deposition process using a Trumpf DMD505 CO2 laser. Various direct laser deposition fill patterns (orientation strategies/tool movement) were investigated in order to identify the best parameters that will result in minimum distortion.

Micromachines ◽  
2018 ◽  
Vol 9 (11) ◽  
pp. 578 ◽  
Author(s):  
Bingrui Lv ◽  
Guilian Wang ◽  
Bin Li ◽  
Haibo Zhou ◽  
Yahui Hu

This paper describes the innovative design of a three-dimensional (3D) motion device based on a flexible mechanism, which is used primarily to produce accurate and fast micro-displacement. For example, the rapid contact and separation of the tool and the workpiece are realized by the operation of the 3D motion device in the machining process. This paper mainly concerns the device performance. A theoretical model for the static performance of the device was established using the matrix-based compliance modeling (MCM) method, and the static characteristics of the device were numerically simulated by finite element analysis (FEA). The Lagrangian principle and the finite element analysis method for device dynamics are used for prediction to obtain the natural frequency of the device. Under no-load conditions, the dynamic response performance and linear motion performance of the three directions were tested and analyzed with different input signals, and three sets of vibration trajectories were obtained. Finally, the scratching experiment was carried out. The detection of the workpiece reveals a pronounced periodic texture on the surface, which verifies that the vibration device can generate an ideal 3D vibration trajectory.


Author(s):  
Christopher Katinas ◽  
Shunyu Liu ◽  
Yung C. Shin

Understanding the capture efficiency of powder during direct laser deposition (DLD) is critical when determining the overall manufacturing costs of additive manufacturing (AM) for comparison to traditional manufacturing methods. By developing a tool to predict the capture efficiency of a particular deposition process, parameter optimization can be achieved without the need to perform a costly and extensive experimental study. The focus of this work is to model the deposition process and acquire the final track geometry and temperature field of a single track deposition of Ti–6Al–4V powder on a Ti–6Al–4V substrate for a four-nozzle powder delivery system during direct laser deposition with a LENS™ system without the need for capture efficiency assumptions by using physical powder flow and laser irradiation profiles to predict capture efficiency. The model was able to predict the track height and width within 2 μm and 31 μm, respectively, or 3.3% error from experimentation. A maximum of 36 μm profile error was observed in the molten pool, and corresponds to errors of 11% and 4% in molten pool depth and width, respectively. Based on experimentation, the capture efficiency of a single track deposition of Ti–6Al–4V was found to be 12.0%, while that from simulation was calculated to be 11.7%, a 2.5% deviation.


Author(s):  
Hu Gong ◽  
F. Z. Fang ◽  
X. F. Zhang ◽  
Juan Du ◽  
X. T. Hu

Edge chipping is one of the most serious issues during machining process of brittle materials. To find an effective method to reduce edge chipping, the relationship between the distribution of maximum principal stress and edge chipping is studied comprehensively based on 3D finite element analysis (FEA) model of in-process workpiece structure in this paper. Three-level influencing factors of edge chipping are proposed, which are helpful to understand the relationship between intuitive machining parameters and edge chipping at different levels. Based on the analysis, several experiments are designed and conducted for drilling and slotting to study the strategy of controlling edge chipping. Two methods are adopted: (a) adding additional support, (b) improving tool path. The result show that edge chipping can be reduced effectively by optimizing the distribution of the maximum principal stress during the machining process. Further, adding addtitional support method is extended to more complex parts and also obtain a good result. Finally, how to use adding additional support method, especially for complex parts, will be discussed in detail. Several open questions are raised for future research.


2013 ◽  
Vol 579-580 ◽  
pp. 603-606
Author(s):  
Xin Bo Jiang ◽  
Quan Hui Wu ◽  
Feng Ming Jing ◽  
Chun Mei Yang ◽  
Ge Luo

Door hardware doors finished slot machining process is a very important step in the process, as doors hardware slots are in scattered locations, different specifications, difficult processing. This paper, the rotary table overcome dispersion slot door hardware, according to the characteristics of wooden slots hardware, selected the minimum number of spindles to satisfy all wood processing hardware slot, making maximize spindle utilization. The use of finite element design rotary table and key components of the cutting system, verify the reasonableness of its structure.


Sign in / Sign up

Export Citation Format

Share Document