A planar twist channel angular extrusion (PTCAE) as a novel severe plastic deformation method based on equal channel angular extrusion (ECAE) method

Author(s):  
Mahmoud Shamsborhan ◽  
Ali Shokuhfar

Planar twist channel angular extrusion (PTCAE) is a new severe plastic deformation method to produce bulk ultra-fine-grained materials which is based on conventional equal channel angular extrusion by applying additional planar twist strain in deformation zone of ECAP process and simultaneously imposing larger strain and increasing severe plastic deformation methods efficiency. Plastic deformation characteristics of PTCAE method were analyzed through finite element analysis using Deform 3D V.5 software, processing loads and values of effective strain in different directions of sample were studied for different planar twist angles (α) in comparison with the results of conventional ECAP with the same channel dimension and arc of curvature angles. Die and punch were assumed as rigid bodies, whereas the billet, with dimensions of 10 mm × 10 mm × 70 mm was considered to be deformable pure aluminum. The processing conditions such as friction coefficient, ram speed, mesh size and other factors were held constant to make comparison between the different processing conditions possible. The results indicated that more strain values with more uniform distribution may be achieved after PTCAE method in comparison with the conventional ECAP method. Also, it is observed that in α = 20, the equivalent strain distribution is homogenous approximately in both of vertical and horizontal directions of the cross-section of the sample. Therefore, PTCAE can be considered as a promising severe plastic deformation technique for future industrial applications which can be installed on any standard extrusion equipment without any additional required facilities that are essential in other new severe plastic deformation methods and can be used instead of ECAP process significantly and beneficially.

2007 ◽  
Vol 345-346 ◽  
pp. 177-180 ◽  
Author(s):  
Dyi Cheng Chen ◽  
Yi Ju Li ◽  
Gow Yi Tzou

The shear plastic deformation behavior of a material during equal channel angular (ECA) extrusion is governed primarily by the die geometry, the material properties, and the processing conditions. Using commercial DEFORMTM 2D rigid-plastic finite element code, this study investigates the plastic deformation behavior of Ti-6Al-4V titanium alloy during 1- and 2-turn ECA extrusion processing in dies containing right-angle turns. The simulations investigate the distributions of the billet mesh, effective stress and effective strain under various processing conditions. The respective influences of the channel curvatures in the inner and outer regions of the channel corner are systematically examined. The numerical results provide valuable insights into the shear plastic deformation behavior of Ti-6Al-4V titanium alloy during ECA extrusion.


Metals ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 1035 ◽  
Author(s):  
Vladimir Segal ◽  
Svetlana V. Reznikov ◽  
Nagendra Murching ◽  
Vincent H. Hammond ◽  
Laszlo J. Kecskes

This paper describes a new modification of equal-channel angular extrusion for the “pass-by-pass” semi-continuous (sc-ECAE) processing of lightweight alloys. Sc-ECAE leads to a multifold increase in productivity and decrease in costs, providing a technical basis for the commercialization of severe plastic deformation (SPD) on a large scale with massive volume production. The evolution of the structure and properties are analyzed for an aluminum alloy (AA) 5083 and a magnesium alloy AZ31 as model materials representing, respectively, the structural refinement under severe plastic deformation (SPD) via strain-induced formation of new grain boundaries and via dynamic recrystallization. For the first alloy, the microstructure after sc-ECAE is formed via ultrafine sub-grains, which are further transformed into sub-micrometer grains during post-ECAE rolling. The preliminary solution treatment of AA5083 is an important stabilizing factor for the achievement of high mechanical properties. For the second alloy, optimized sc-ECAE results in a remarkable structural refinement, and a good balance of properties is obtained with a low number of passes. However, additional rolling in the latter case leads to a degradation of the structure and properties.


JOM ◽  
2004 ◽  
Vol 56 (10) ◽  
pp. 69-77 ◽  
Author(s):  
S. L. Semiatin ◽  
A. A. Salem ◽  
M. J. Saran

2008 ◽  
Vol 584-586 ◽  
pp. 63-67
Author(s):  
D.C. Foley ◽  
R.E. Barber ◽  
J.T. Im ◽  
B. Onipede ◽  
K.T. Hartwig

Equal Channel Angular Extrusion is a widely adopted severe plastic deformation process capable of imparting large amounts of strain in a material via multiple passes through the die. In order to facilitate reinsertion of worked bars for multipass processing, reshaping is often required. Although this topic is rarely discussed in the literature, it is a significant step that can influence processing efficiency. This paper presents several reshaping options and makes recommendations for method selection based on the authors’ experiences with each.


2010 ◽  
Vol 654-656 ◽  
pp. 1574-1577 ◽  
Author(s):  
A. Krishnaiah ◽  
K. Kumaran ◽  
Chakkingal Uday

Equal channel angular extrusion (ECAE) is a severe plastic deformation (SPD) method for obtaining bulk nanostructured materials. The ECAE die consists of two equal channels that intersect at an angle, usually between 90° and 135°. In the present study, the plastic deformation behavior of the Cu during the ECAE process with 120° die through multiple passes was investigated. Finite element modelling was included in order to analyze the deformation behavior as the material passes through the die. In order to perform the FEM simulations the properties of the commercial purity Cu have been selected.


2012 ◽  
Vol 713 ◽  
pp. 31-36 ◽  
Author(s):  
C.J. Luis-Pérez ◽  
Ignacio Puertas ◽  
Daniel Salcedo ◽  
Javier León ◽  
Ivan Pérez

Over recent years, some severe plastic deformation processes have been developed with the aim of obtaining a material with sub-micrometric or even nanometric grain size, such as: ECAE (Equal channel angular extrusion) and HPT (High pressure torsion) among many others. The main aim of this present study is to analyse the upsetting of the 5083 Al-Mg-Mn alloy, which had been previously deformed by ECAE. Different processing temperatures will be used and the final properties of the resulting material will be determined.


2007 ◽  
Vol 340-341 ◽  
pp. 1381-1386 ◽  
Author(s):  
R. Lupoi ◽  
F.H. Osman (1)

The Channel Angular Extrusion (CAE) technique is a process, in which a deformable solid material is led to yielding through the intersection of inclined channels. Compared to classic plastic deformation, the process is technically simple but the material experiences, instantly, large plastic deformation. The deformation occurs locally and high internal stresses develop during the process. In most cases the process is used for grain size refinement. Equal Channel Angular Extrusion (ECAE) is a special case where the intersecting channels are of equal cross sections. In this paper, an analytical study of the internal stresses and those developed along CAE tools is presented. A deformation model is introduced for the general process of channel extrusion in which the intersecting channels are not necessarily equal. The procedure splits the material at the intersection of the channels into two zones; one causes the deformation while the other remains rigid. The analysis is also applied to the particular case of ECAE, and the results are compared with those obtained from a finite element analysis and the overall experimental pressure.


Sign in / Sign up

Export Citation Format

Share Document