Study of the Titanium Alloy Deformation Behavior in Equal Channel Angular Extrusion

2007 ◽  
Vol 345-346 ◽  
pp. 177-180 ◽  
Author(s):  
Dyi Cheng Chen ◽  
Yi Ju Li ◽  
Gow Yi Tzou

The shear plastic deformation behavior of a material during equal channel angular (ECA) extrusion is governed primarily by the die geometry, the material properties, and the processing conditions. Using commercial DEFORMTM 2D rigid-plastic finite element code, this study investigates the plastic deformation behavior of Ti-6Al-4V titanium alloy during 1- and 2-turn ECA extrusion processing in dies containing right-angle turns. The simulations investigate the distributions of the billet mesh, effective stress and effective strain under various processing conditions. The respective influences of the channel curvatures in the inner and outer regions of the channel corner are systematically examined. The numerical results provide valuable insights into the shear plastic deformation behavior of Ti-6Al-4V titanium alloy during ECA extrusion.

2013 ◽  
Vol 479-480 ◽  
pp. 181-186 ◽  
Author(s):  
Dyi Cheng Chen ◽  
Yi Ju Li ◽  
Gow Yi Tzou

The shear plastic deformation behavior of a material during equal channel angular (ECA) extrusion is governed primarily by the die geometry, the material properties, and the process conditions. This paper employs the rigid-plastic finite element (FE) to investigate the plastic deformation behavior of Ti-6Al-4V titanium alloy during ECA extrusion processing. Under various ECA extrusion conditions, the FE analysis investigates the damage factor distribution, the effective stress-strain distribution, and the die load at the exit. The relative influences of the internal angle between the two die channels, the friction factors, the titanium alloy temperature and the strain rate of billet are systematically examined. In addition, the Taguchi method is employed to optimize the ECA process parameters. The simulation results confirm the effectiveness of this robust design methodology in optimizing the ECA processing of the current Ti-6Al-4V titanium alloy.


2008 ◽  
Vol 594 ◽  
pp. 90-95 ◽  
Author(s):  
Dyi Cheng Chen ◽  
Jia Ci Wang ◽  
Gow Yi Tzou

This study investigates a novel changing channel angular (CCA) extrusion process, in which high strains are induced within the billet by passing it through a series of channels of unequal cross-sections arranged such that they form specified internal angles. Using commercial DEFORMTM 2D rigid-plastic finite element code, the plastic deformation behavior of CuZn37 brass alloy is examined during one-turn and two-turn CCA extrusion processing in dies with internal angles of φ =90o, 120o, 135o or 150o, respectively. The simulations focus specifically on the effects of the processing conditions on the effective strain, the rotation angle and the effective stress induced within the extruded billet. The numerical results provide valuable insights into the shear plastic deformation behavior of CuZn37 brass alloy during the CCA extrusion process.


2014 ◽  
Vol 941-944 ◽  
pp. 2313-2316 ◽  
Author(s):  
Arkanti Krishnaiah

Equal channel angular extrusion (ECAE) is a severe plastic deformation (SPD) method for obtaining bulk nanostructured materials. The ECAE die consists of two equal channels that intersect at an angle, usually between 90o and 135o. . In the present study, the plastic deformation behavior of copper during the ECAE process with 120o die was investigated. To analyze the deformation behavior and the related strain distributions in the specimen, the commercial FE code ABAQUS has been used. The properties of the materials are strongly dependent on the shear plastic deformation behavior during equal channel angular extrusion (ECAE), which is controlled mainly by die geometry, material properties, and the friction between billet and the die. The ECAE process for these conditions was explained using the two different friction conditions of 0.15 and 0.08 to all sliding surfaces. The effective strain by the theoretical equation is in good agreement with the FEM results.


2012 ◽  
Vol 488-489 ◽  
pp. 996-1000 ◽  
Author(s):  
Zohreh Arabshahi ◽  
Jamal Kashani ◽  
S.S.R. Koloor ◽  
Mohammed Rafiq Abdul Kadir ◽  
Abbas Azari

Equal channel angular extrusion (ECAE) is a severe plastic deformation (SPD) method for obtaining bulk nanostructured materials. The ECAE die consists of two equal channels that intersect at an angle, usually between 90。and 135。. In the present study, the plastic deformation behavior of copper during the ECAE process with 120o die was investigated. To analyze the deformation behavior and the related strain distributions in the specimen, the commercial FE code ABAQUS has been used. The properties of the materials are strongly dependent on the shear plastic deformation behavior during equal channel angular extrusion (ECAE), which is controlled mainly by die geometry, material properties, and the friction between billet and the die. The ECAE process for these conditions was explained using the two different friction conditions of 0.15 and 0.08 to all sliding surfaces. The effective strain by the theoretical equation is in good agreement with the FEM results.


2010 ◽  
Vol 654-656 ◽  
pp. 1574-1577 ◽  
Author(s):  
A. Krishnaiah ◽  
K. Kumaran ◽  
Chakkingal Uday

Equal channel angular extrusion (ECAE) is a severe plastic deformation (SPD) method for obtaining bulk nanostructured materials. The ECAE die consists of two equal channels that intersect at an angle, usually between 90° and 135°. In the present study, the plastic deformation behavior of the Cu during the ECAE process with 120° die through multiple passes was investigated. Finite element modelling was included in order to analyze the deformation behavior as the material passes through the die. In order to perform the FEM simulations the properties of the commercial purity Cu have been selected.


2010 ◽  
Vol 11 (2) ◽  
pp. 137-149
Author(s):  
Ali A Aljubouri

 The die geometry has a massive effect on the plastic deformation behavior during pressing of material processed by equal channel angular pressing (ECAP) method; subsequently the properties of the processed material are strongly dependent on it. Two categories of designed and manufactured dies are used for equal channel angular pressing, a 1200 sharp angle and a 900 round –cornered (200) dies, that produce strain per pass through both dies of ~0.7 and ~1.05   respectively. The microhardness developed in Al-Si alloy during ECAP using route BC. The microhardness increased by a factor of >1.5, after only 1 pressing. Subsequently, the hardness increases slightly up to 8 pressings through the 1200 sharp angle die, while it is increased by a factor of ~2.6 after 5 passes by using the 900 round cornered die, comparing with that for the cast workpiece.


2006 ◽  
Vol 503-504 ◽  
pp. 931-936
Author(s):  
Quang Pham ◽  
Seung Chae Yoon ◽  
Sun Ig Hong ◽  
Hyoung Seop Kim

Plastic deformation behavior during equal channel multi-angular pressing (ECMAP) was analyzed using the three dimensional finite volume method of the commercial code MSC.Superforge. In order to understand local and global deformation characteristics, effective strain and pressing load histories were investigated. The predicted plastic deformation behavior of the workpiece material during ECMAP of route A, route B and route C with a theoretical total strain of ~2.2 upon a single pass at three different friction factors (m=0, 0.1 and 0.2) was compared. The predicted strain results show different values in outside and similar values in central regions of the processed workpieces with different friction and forming routes. The pressing loads are higher under higher friction condition, showing almost no difference with three different pressing routes.


Sign in / Sign up

Export Citation Format

Share Document