Simplified modelling and development of a bi-directionally adjustable constant-force compliant gripper

Author(s):  
Guangbo Hao ◽  
John Mullins ◽  
Kevin Cronin

This paper proposes the design of a wholly mechanical constant-force gripper that can accommodate the imprecise manipulation of brittle/delicate objects by the actuation. This was achieved by designing a constant-force mechanism as the jaw that allowed a constant force to be applied to the grasping objects regardless of the displacement of the mechanism. The constant-force mechanism is attached to the end effector of the gripper via a parallelogram mechanism which ensures that the jaws remain in parallel. The constant-force mechanism combines the negative stiffness of a bistable mechanism and the positive stiffness of a linear spring to generate a constant force output. By preloading the positive stiffness mechanism, the magnitude of the constant force can be adjusted to be as low as zero. The constant-force mechanism has been fully modelled and simulated using finite element analysis. A normalised force-displacement curve has been developed that allows to obtain the simplified analytical negative stiffness of the bistable mechanism. The design formulation to find the optimal configuration that produces the most constant force has been developed. Illustrated experiments prove the concept of the design although the discrepancies between finite element analysis results and testing results exist due to bistable beam manufacturing error.

Author(s):  
Guangbo Hao ◽  
John Mullins

Bistable mechanisms have two stable positions and their characteristic analysis is much harder than the traditional spring system due to their postbuckling behaviour. As the strong nonlinearity induced by the postbuckling, it is difficult to establish a correct model to reveal the comprehensive nonlinear characteristics. This paper deals with the in-plane comprehensive static analysis of a translational bistable mechanism using nonlinear finite element analysis. The bistable mechanism consists of a pair of fixed-clamped inclined beams in symmetrical arrangement, which is a monolithic design and works within the elastic deformation domain. The displacement-controlled finite element analysis method using Strand7 is first discussed. Then the force–displacement relation of the bistable mechanism along the primary motion direction is described followed by the detailed primary translational analysis for different parameters. A simple analytical (empirical) equation for estimating the negative stiffness is obtained, and experimental testing is performed for a case study. It is concluded that (a) the negative stiffness magnitude has no influence from the inclined angle, but is proportional to the product of the Young’s modulus, beam depth, and cubic ratio for in-plane thickness to the beam length; (b) the unstable position is proportional to the product of the beam length and the Sine function of the inclined angle, and is not affected by the in-plane thickness and the material (or the out-of-plane thickness). The in-plane off-axis (translational and rotational) stiffness is further analysed to show the stiffness changes over the primary motion and the off-axis motion, and a negative rotational stiffness domain has been obtained.


2012 ◽  
Vol 134 (3) ◽  
Author(s):  
Yi-Ho Chen ◽  
Chao-Chieh Lan

Force regulation is a challenging problem for robot end-effectors when interacting with an unknown environment. It often requires sophisticated sensors with computerized control. This paper presents an adjustable constant-force mechanism (ACFM) to passively regulate the contact force of a robot end-effector. The proposed ACFM combines the negative stiffness of a bistable mechanism and positive stiffness of a linear spring to generate a constant-force output. Through prestressing the linear spring, the constant-force magnitude can be adjusted to adapt to different working environments. The ACFM is a monolithic compliant mechanism that has no frictional wear and is capable of miniaturization. We propose a design formulation to find optimal mechanism configurations that produce the most constant-force. A resulting force to displacement curve and maximal stress curve can be easily manipulated to fit a different application requirement. Illustrated experiments show that an end-effector equipped with the ACFM can adapt to a surface of variable height, without additional motion programming. Since sensors and control effort are minimized, we expect this mechanism can provide a reliable alternative for robot end-effectors to interact friendly with an environment.


Actuators ◽  
2018 ◽  
Vol 7 (4) ◽  
pp. 65 ◽  
Author(s):  
Xiaozhi Zhang ◽  
Guangwei Wang ◽  
Qingsong Xu

This paper presents the design and testing of a novel flexure-based compliant compound constant-force mechanism (CCFM). One uniqueness of the proposed mechanism lies in that it achieves both constant-force input and constant-force output, which is enabled by integrating two types of sub-mechanisms termed active and passive constant-force structures, respectively. Unlike conventional structures, the active constant-force structure allows the reduction on input force requirement and thus the enlargement of motion stroke provided that the maximum stress of the material is within allowable value. While the passive one offers a safe environmental interaction during the contact process. Analytical model of the proposed CCFM is derived which is verified by simulation study with finite element analysis (FEA). A prototype mechanism is fabricated by a 3D printer to demonstrate the performance of the proposed CCFM design. Experimental results reveal the effectiveness of the reported CCFM.


Author(s):  
Giovanni Berselli ◽  
Rocco Vertechy ◽  
Gabriele Vassura ◽  
Vincenzo Parenti Castelli

The interest in actuators based on dielectric elastomer films as a promising technology in robotic and mechatronic applications is increasing. The overall actuator performances are influenced by the design of both the active film and the film supporting frame. This paper presents a single-acting actuator which is capable of supplying a constant force over a given range of motion. The actuator is obtained by coupling a rectangular film of silicone dielectric elastomer with a monolithic frame designed to suitably modify the force generated by the dielectric elastomer film. The frame is a fully compliant mechanism whose main structural parameters are calculated using a pseudo-rigid-body model and then verified by finite element analysis. Simulations show promising performance of the proposed actuator.


Author(s):  
Adarsh Mavanthoor ◽  
Ashok Midha

Significant reduction in cost and time of bistable mechanism design can be achieved by understanding their bistable behavior. This paper presents bistable compliant mechanisms whose pseudo-rigid-body models (PRBM) are four-bar mechanisms with a torsional spring. Stable and unstable equilibrium positions are calculated for such four-bar mechanisms, defining their bistable behavior for all possible permutations of torsional spring locations. Finite Element Analysis (FEA) and simulation is used to illustrate the bistable behavior of a compliant mechanism with a straight compliant member, using stored energy plots. These results, along with the four-bar and the compliant mechanism information, can then be used to design a bistable compliant mechanism to meet specified requirements.


Author(s):  
MK Samal ◽  
KS Balakrishnan ◽  
J Parashar ◽  
GP Tiwari ◽  
S Anantharaman

Determination of transverse mechanical properties from the ring type of specimens directly machined from the nuclear reactor pressure tubes is not straightforward. It is due to the presence of combined membrane as well as bending stresses arising in the loaded condition because of the curvature of the specimen. These tubes are manufactured through a complicated process of pilgering and heat treatment and hence, the transverse properties need to be determined in the as-manufactured condition. It may not also be possible to machine small miniaturized specimen in the circumferential direction especially in the irradiated condition. In this work, we have performed ring-tensile tests on the un-irradiated ring tensile specimen using two split semi-cylindrical mandrels as the loading device. A three-dimensional finite element analysis was performed in order to determine the material true stress–strain curve by comparing experimental load–displacement data with those predicted by finite element analysis. In order to validate the methodology, miniaturized tensile specimens were machined from these tubes and tested. It was observed that the stress–strain data as obtained from ring tensile specimen could describe the load–displacement curve of the miniaturized flat tensile specimen very well. However, it was noted that the engineering stress–strain as directly obtained from the experimental load–displacement curves of the ring tensile tests were very different from that of the miniaturized specimen. This important aspect has been resolved in this work through the use of an innovative type of 3-piece loading mandrel.


Author(s):  
Zhongtian Xie ◽  
Lifang Qiu

Compliant constant-force mechanisms (CFM) are a type of compliant mechanism which produce a reaction force at the output port that does not change for a large range of input motion. This paper describes a new compliant CFM, introduces its design and configuration-improvement process. A finite element analysis (FEA) model of the compliant CFM was created to evaluate its constant force behavior. The FEA result shows that when the displacement is Δ = 4 mm, the compliant CFM maintains a nearly constant force in the operational displacement range of 1.31 mm to 4 mm with an error of 5.05%. The operational range accounts for 67% of the total motion. This compliant CFM can be used to regulate the contact force of a robot end-effector or as an electrical connector.


2013 ◽  
Vol 341-342 ◽  
pp. 515-518
Author(s):  
De Gong Chang ◽  
Dong Hao Liu ◽  
Song Mei Li ◽  
Wei Xing Qiu ◽  
Hong Tao Zhang

A kind of force measurement mechanism which can measure the two-directional transient impact load in the same time is introduced in this paper, and the analysis research of the mechanical part are followed. First, by using the pro/E software, the 3D concrete model of the force mechanism is contributed. Then, by means of the ANSYS finite element analysis software, its stiffness and strength are analyzed, and strain and deformation figures from different directions are obtained. The static maximum deformation and strain of the force measurement mechanism and its key components, and also the whole distribution are showed in the analysis results. The weak parts of the force measurement mechanism and its key components are also showed in this paper, which can be helpful for the further improvement and following actual tests [.1]


2020 ◽  
Vol 15 (2) ◽  
Author(s):  
Werner W. P. J. van de Sande ◽  
Awaz Ali ◽  
Giuseppe Radaelli

Abstract Contact force management has been proven to have a positive effect on the outcome of cardiac ablation procedures. However, no method exists that allows maintaining a constant contact force within a required and effective range. This work aims to develop and evaluate such a constant force mechanism for use in an ablation catheter. A passive constant force mechanism was designed based on a tape loop. The tape loop consists of two tapered springs that work in parallel. A finite element analysis was carried out to verify the behavior and performance of the design. A design based on requirements for a constant force ablation tip showed an average force of about 7.8×10−2 N±8×10−3 N over 20 mm in simulation. A scaled prototype was built and evaluated to prove the validity of the concept; this prototype provides an average force of 1.3×10−1 N±1.6×10−2 N over 35 mm. The mechanism allows for controlled delivery of contact force within a desired and effective range. Based on these findings, it can be concluded that the approach is successful but needs to be optimized for future applications. Being able to control the delivery of contact force in a constant range may increase the effectivity of cardiac ablation procedures and improve clinical outcomes.


Author(s):  
Qingsong Xu

This paper presents the design and analysis a flexure-guided compliant micropositioning stage with constant force and large stroke. The constant force output is achieved by combining a bistable flexure mechanism with a positive-stiffness flexure mechanism. In consideration of the constraint of conventional tilted beam-based bistable mechanism, a new type of bistable structure based on tilted-angle compound parallelogram flexure is proposed to achieve a larger range of constant force output while maintaining a compact physical size. To facilitate the parametric design of the flexure mechanism, analytical models are derived to quantify the stage performance. The models are verified by carrying out nonlinear finite-element analysis. Results demonstrate the effectiveness of the proposed ideas for a long-stroke, constant-force compliant mechanism dedicated to precision micropositioning applications.


Sign in / Sign up

Export Citation Format

Share Document