A CAD-based approach for measuring volumetric error in layered manufacturing

Author(s):  
Biranchi Narayan Panda ◽  
Raju MVA Bahubalendruni ◽  
Bibhuti Bhusan Biswal ◽  
Marco Leite

Rapid prototyping uses layered manufacturing technology to produce functional parts directly from 3D computer-aided design model without involving any tools and human intervention. Due to layer by layer deposition, volumetric error remains in the part which is basically the volumetric difference between computer-aided design model and the fabricated part. This volumetric error causes poor dimensional accuracy and surface finish, which has limited the widespread applications of rapid prototyping. Although rapid prototyping is able to produce functional parts in less build time with less material wastage, today many industries are looking for better surface quality associated with these parts. Literature discloses that the part quality can be improved by selecting proper build orientation that corresponds to minimum volumetric error. In support of this, current study presents a computer-aided design-based novel methodology to precisely measure the volumetric error in layered manufacturing process, in particular fused deposition modeling process. The proposed method accepts computer-aided design model of the part in .CAT format and automatically calculates volumetric error for different build orientations. An Excel function is integrated with it to determine optimum build orientation based on minimum volumetric error. Several simple and complex examples verified the robustness of our proposed methodology. We anticipate that the current invention will help future rapid prototyping users in producing high-quality products through an intelligent process planning.

2013 ◽  
Vol 391 ◽  
pp. 406-409 ◽  
Author(s):  
Wan Yusoff Way ◽  
M. Aichouni ◽  
M. Zul Amzar Zulkiflee ◽  
Mohd Sallehuddin Ahmad Derifaee

The purpose of this research is to fabricate bio-model that based on Rapid Prototyping technology which is by using Fused Deposition Modeling (FDM) and designing an implant by using a Computer Aided Design technology. A case study from Hospital Kuala Lumpur which is the maxillofacial will be fabricated by using FDM technique. The completed 3D prototype or biomodel will be analyzed to makes the result more truthful in terms of the dimensional accuracy, operational error and cost analysis. Computer aided design technology is used to design the customized implant in order to replace the fractured maxilla part.


Author(s):  
V. Vinod Kumar ◽  
G. R. N. Tagore ◽  
A. Venugopal

Rapid prototyping technology is widely used to fabricate 3-D objects with all features of a design using Computer Aided Design (CAD) model. The final fabricated object with rapid prototyping technique has to be evaluated regarding the extent of its closeness to CAD model. Geometric conformity analysis has to be used in determining a measure of the geometric deviation between designed and fabricated 3-D models. In this paper evaluation technique is used to provide an aggregate measure of overall geometric deviation between designed free formed surface and its fabricated geometries using Fused Deposition Modeling (FDM) technique. This approach is typically utilized for large or more complex assemblies such as vehicle interiors and exteriors and full scale aircraft etc. Computer Aided Inspection with CMM aims at development of suitable methodology so as to convert data obtained from CMM to convenient formats to measure dimensional and form errors of freeform surface objects. The present work used in additive manufacturing with the newer methodology of inspecting in rapid product development also.


2017 ◽  
Vol 9 (7) ◽  
pp. 168781401771038 ◽  
Author(s):  
Isad Saric ◽  
Adil Muminovic ◽  
Mirsad Colic ◽  
Senad Rahimic

This article presents architecture of integrated intelligent computer-aided design system for designing mechanical power-transmitting mechanisms (IICADkmps). The system has been developed in C# program environment with the aim of automatising the design process. This article presents a modern, automated approach to design. Developed kmps modules for calculation of geometrical and design characteristics of mechanical power-transmitting mechanisms are described. Three-dimensional geometrical parameter modelling of mechanical power-transmitting mechanisms was performed in the computer-aided design/computer-aided manufacturing/computer-aided engineering system CATIA V5. The connection between kmps calculation modules and CATIA V5 modelling system was established through initial three-dimensional models – templates. The outputs from the developed IICADkmps system generated final three-dimensional virtual models of mechanical power-transmitting mechanisms. Testing of the developed IICADkmps system was performed on friction, belt, cogged (spur and bevel gears) and chain transmitting mechanisms. Also, connection of the developed IICADkmps system with a device for rapid prototyping and computer numerical control machines was made for the purpose of additional testing and verification of practical use. Physical prototypes of designed characteristic elements of mechanical power-transmitting mechanisms were manufactured. The selected test three-dimensional virtual prototypes, obtained as an output from the developed IICADkmps system, were manufactured on the device for rapid prototyping (three-dimensional colour printer Spectrum Z510) and computer numerical control machines. Finally, at the end of the article, conclusions and suggested possible directions of further research, based on theoretical and practical research results, are presented.


2020 ◽  
Vol 1 (2) ◽  
pp. 81-91
Author(s):  
Frince Marbun ◽  
Richard A.M. Napitupulu

3D printing technology has great potential in today's manufacturing world, one of its uses is in making miniatures or prototypes of a product such as a piston. One of the most famous and inexpensive 3D printing (additive manufacturing) technologies is Fused Deposition Modeling (FDM), the principle FDM works by thermoplastic extrusion through a hot nozzle at melting temperature then the product is made layer by layer. The two most commonly used materials are ABS and PLA so it is very important to know the accuracy of product dimensions. FDM 3D Printing Technology is able to make duplicate products accurately using PLA material. FDM machines work by printing parts that have been designed by computer-aided design (CAD) and then exported in the form of STL or .stl files and uploaded to the slicer program to govern the printing press according to the design. Using Anet A8 brand 3D printing tools that are available to the public, Slicing of general CAD geometry files such as autocad and solidwork is the basis for making this object. This software is very important to facilitate the design process to be printed. Some examples of software that can be downloaded and used free of charge such as Repetier-Host and Cura. by changing the parameters in the slicer software is very influential in the 3D printing manufacturing process.


Author(s):  
James I. Novak ◽  
Mark Zer-Ern Liu ◽  
Jennifer Loy

This chapter builds new knowledge for design engineers adopting fused deposition modeling (FDM) technology as an end manufacturing process, rather than simply as a prototyping process. Based on research into 2.5D printing and its use in real-world additive manufacturing situations, a study featuring 111 test pieces across the range of 0.4-4.0mm in thickness were analyzed in increments of 0.1mm to understand how these attributes affect the quality and print time of the parts and isolate specific dimensions which are optimized for the FDM process. The results revealed optimized zones where the outer wall, inner wall/s, and/or infill are produced as continuous extrusions significantly faster to print than thicknesses falling outside of optimized zones. As a result, a quick reference graph and several equations are presented based on fundamental FDM principles, allowing design engineers to implement optimized wall dimensions in computer-aided design (CAD) rather than leaving print optimization to technicians and manufacturers in the final process parameters.


Sign in / Sign up

Export Citation Format

Share Document