Size-dependent dynamic modeling of inhomogeneous curved nanobeams embedded in elastic medium based on nonlocal strain gradient theory

Author(s):  
Farzad Ebrahimi ◽  
Mohammad R Barati

In this paper, size-dependent free vibration analysis of curved functionally graded nanobeams embedded in Winkler–Pasternak elastic medium is carried out via an analytical solution method. Three kinds of boundary condition namely, simply supported-simply supported, simply supported-clamped and clamped-clamped are investigated. Material properties of curved functionally graded beam change in thickness direction according to the Mori–Tanaka model. Nonlocal strain gradient elasticity theory is adopted to capture the size effects in which the stress is considered for not only the nonlocal stress field but also the strain gradients stress field. Nonlocal governing equations of curved functionally graded nanobeam are obtained from Hamilton’s principle based on Euler–Bernoulli beam model. Finally, the influences of length scale parameter, nonlocal parameter, opening angle, elastic medium, material composition, slenderness ratio and boundary conditions on the vibrational characteristics of nanosize curved functionally graded beams are explored.

Author(s):  
Bo Zhou ◽  
Zetian Kang ◽  
Xiao Ma ◽  
Shifeng Xue

This paper focuses on the size-dependent behaviors of functionally graded shape memory alloy (FG-SMA) microbeams based on the Bernoulli-Euler beam theory. It is taken into consideration that material properties, such as austenitic elastic modulus, martensitic elastic modulus and critical transformation stresses vary continuously along the longitudinal direction. According to the simplified linear shape memory alloy (SMA) constitutive equations and nonlocal strain gradient theory, the mechanical model was established via the principle of virtual work. Employing the Galerkin method, the governing differential equations were numerically solved. The functionally graded effect, nonlocal effect and size effect of the mechanical behaviors of the FG-SMA microbeam were numerically simulated and discussed. Results indicate that the mechanical behaviors of FG-SMA microbeams are distinctly size-dependent only when the ratio of material length scale parameter to the microbeam height is small enough. Both the increments of material nonlocal parameter and ratio of material length-scale parameter to the microbeam height all make the FG-SMA microbeam become softer. However, the stiffness increases with the increment of FG parameter. The FG parameter plays an important role in controlling the transverse deformation of the FG-SMA microbeam. This work can provide a theoretical basis for the design and application of FG-SMA microstructures.


2020 ◽  
Vol 31 (12) ◽  
pp. 1511-1523
Author(s):  
Mohammad Mahinzare ◽  
Hossein Akhavan ◽  
Majid Ghadiri

In this article, a first-order shear deformable model is expanded based on the nonlocal strain gradient theory to vibration analysis of smart nanostructures under different boundary conditions. The governing equations of motion of rotating magneto-viscoelastic functionally graded cylindrical nanoshell in the magnetic field and corresponding boundary conditions are obtained using Hamilton’s principle. To discretize the equations of motion, the generalized differential quadrature method is applied. The aim of this work is to investigate the effects of the temperature changes, nonlocal parameter, material length scale, viscoelastic coefficient, various boundary conditions, and the rotational speed of this smart structure on natural frequencies of rotating cylindrical nanoshell made of magneto-viscoelastic functionally graded material.


Sign in / Sign up

Export Citation Format

Share Document