scholarly journals Evolution of specimen strain rate in split Hopkinson bar test

Author(s):  
Hyunho Shin ◽  
Jong-Bong Kim

The specimen strain rate in the split Hopkinson bar (SHB) test has been formulated based on a one-dimensional assumption. The strain rate is found to be controlled by the stress and strain of the deforming specimen, geometry (the length and diameter) of specimen, impedance of bar, and impact velocity. The specimen strain rate evolves as a result of the competition between the rate-increasing and rate-decreasing factors. Unless the two factors are balanced, the specimen strain rate generally varies (decreases or increases) with strain (specimen deformation), which is the physical origin of the varying nature of the specimen strain rate in the SHB test. According to the formulated strain rate equation, the curves of stress–strain and strain rate–strain are mutually correlated. Based on the correlation of these curves, the strain rate equation is verified through a numerical simulation and experiment. The formulated equation can be used as a tool for verifying the measured strain rate–strain curve simultaneously with the measured stress–strain curve. A practical method for predicting the specimen strain rate before carrying out the SHB test has also been presented. The method simultaneously solves the formulated strain rate equation and a reasonably estimated constitutive equation of specimen to generate the anticipated curves of strain rate–strain and stress–strain in the SHB test. An Excel® program to solve the two equations is provided. The strain rate equation also indicates that the increase in specimen stress during deformation (e.g., work hardening) plays a role in decreasing the slope of the strain rate–strain curve in the plastic regime. However, according to the strain rate equation, the slope of the strain rate–strain curve in the plastic deformation regime can be tailored by controlling the specimen diameter. Two practical methods for determining the specimen diameter to achieve a nearly constant strain rate are presented.

2012 ◽  
Vol 706-709 ◽  
pp. 774-779 ◽  
Author(s):  
Jan Peirs ◽  
Patricia Verleysen ◽  
Kim Verbeken ◽  
Frederik Coghe ◽  
Joris Degrieck

An accurate isotropic and kinematic hardening model and description of the strain rate dependent material behaviour is necessary for simulation of fast forming processes. Consequently, the material model parameter identification requires experiments where large strains, high strain rates and strain path changes can be attained. Usually, quasi-static tension-compression Bauschinger tests are used to assess the materials kinematic hardening. Hereby it’s important to have the same specimen geometry and boundary conditions in the forward and reverse loading step which is not easily achieved in high strain rate testing techniques. In this work, high strain rate split Hopkinson bar torsion experiments on Ti6Al4V are carried out to study the constitutive material behaviour at large plastic strain and strain rate. In torsion experiments, due to the absence of cross sectional area reduction, higher strains than in tensile tests can be obtained. In addition, a modified torsional split Hopkinson bar setup is developed to perform dynamic Bauschinger tests. A shear reversed-shear load is applied instead of the classical tension-compression load cycle. The test results are analysed to find out if the technique can be used for characterisation of the kinematic material behaviour. Digital image correlation and finite element simulations are used to improve the interpretation of the experimental results.


1973 ◽  
Vol 40 (1) ◽  
pp. 277-282 ◽  
Author(s):  
T. Nicholas

The analysis of the split Hopkinson bar experiment for determining dynamic material behavior is examined for several specific examples of specimen materials which exhibit strain-rate-dependent mechanical behavior. The torsional mode of deformation is chosen as more closely representing a one-dimensional state of stress. Details of the propagation and reflection of stress waves within the specimen are studied using a numerical procedure based on the method of characteristics. Reconstituted stress-strain curves calculated from the conventional analysis of the split Hopkinson bar experiment are compared with actual material behavior for several simulated experiments involving variations in input stress, gage length, material behavior, and static stress-strain curves including statically prestressed materials. The validity of the experimental technique is discussed and limitations on its use are delineated.


2018 ◽  
Vol 183 ◽  
pp. 02006 ◽  
Author(s):  
Amos Gilat ◽  
Jeremy D. Seidt

The Split Hopkinson Bar (SHB) technique is used for high strain rate testing of T800/F3900 composite in compression, tension and shear. Digital Image Correlation (DIC) is used for measuring the full-field deformation on the surface of the specimen by using Shimadzu HPV-X2 high-speed video camera. Compression tests have been done on specimens machined from a unidirectional laminate in the 0°and 90° directions. Tensile tests were done in the 90° direction. Shear tests were done by using a notched specimen in a compression SHB apparatus. To study the effect of strain rate, quasi-static testing was also done using DIC and specimens with the same geometry as in the SHB tests. The results show that the DIC technique provides accurate strain measurements even at strains that are smaller than 1%. No strain rate effect is observed in compression in the 0° direction and significant strain rate effects are observed in compression and tension in the 90° direction, and in shear.


1980 ◽  
Vol 26 (94) ◽  
pp. 519 ◽  
Author(s):  
H. Singh ◽  
F.W. Smith

Abstract In conducting tension and compression tests on snow samples, strains and strain-rates are usually determined from the displacements of the ends of the samples. In this work, a strain-gage which mounts directly onto the snow sample during testing, was developed and was found to give accurate and direct measurements of strain and strain-rates. A commercially available 0-28 pF variable capacitor was modified to perform the required strain measurements. It is a polished metallic plunger sliding inside a metal-coated glass tube. The plunger and tube were each soldered to the end of a spring-steel wire arm. To the other end of these arms were soldered to 10 mm square pads made of thin brass shim stock. The whole device weighs 2.5 g and the low coefficient of friction in the capacitor resulted in a very low actuation force. To mount the strain gage, the pads are wetted and frozen onto the snow sample. A high degree of sensitivity was achieved through the use of “phase-lock-loop” electronic circuitry. The capacitance change caused by the strain in the sample, changes the frequency of output signal from an oscillator and thus causes the change in output from the system. In the locked state, to which the system is constantly driven by a feed-back loop, the system output is almost ripple free. The strain gages were calibrated in the field in order to take into account the effects of very low field temperatures. The calibration curves were almost linear over the travel of 15 mm, the maximum limit. The sensitivity of the system is 4 mV per strain unit, but this could be increased by an order of magnitude by minor adjustments in the circuit. Constant strain-rate tensile tests were performed on natural snow at Berthoud Pass, Colorado, U.S.A., in the density range of 140-290 kg m-3. Four strain gages were mounted onto the samples to sense any non-uniform deformation which otherwise would have gone unnoticed or caused scatter in the data. The average indication of these gages was used to construct stress—strain curves for various types of snow at different strain-rates. The effect of strain-rate on the behavior of snow was studied. “Ratcheting” in the stress-strain curve in the region where the snow becomes plastic was observed first by Kinosita in his compression tests. A similar phenomenon was observed in these tension tests. It was found that directly measured strain is quite different from that which would be calculated from sample end movement. Strain softening was not observed in these tests up to total strains of 8%. The strain-rate effects found were comparable to the results of other investigators.


1980 ◽  
Vol 26 (94) ◽  
pp. 519-519
Author(s):  
H. Singh ◽  
F.W. Smith

AbstractIn conducting tension and compression tests on snow samples, strains and strain-rates are usually determined from the displacements of the ends of the samples. In this work, a strain-gage which mounts directly onto the snow sample during testing, was developed and was found to give accurate and direct measurements of strain and strain-rates.A commercially available 0-28 pF variable capacitor was modified to perform the required strain measurements. It is a polished metallic plunger sliding inside a metal-coated glass tube. The plunger and tube were each soldered to the end of a spring-steel wire arm. To the other end of these arms were soldered to 10 mm square pads made of thin brass shim stock. The whole device weighs 2.5 g and the low coefficient of friction in the capacitor resulted in a very low actuation force. To mount the strain gage, the pads are wetted and frozen onto the snow sample.A high degree of sensitivity was achieved through the use of “phase-lock-loop” electronic circuitry. The capacitance change caused by the strain in the sample, changes the frequency of output signal from an oscillator and thus causes the change in output from the system. In the locked state, to which the system is constantly driven by a feed-back loop, the system output is almost ripple free.The strain gages were calibrated in the field in order to take into account the effects of very low field temperatures. The calibration curves were almost linear over the travel of 15 mm, the maximum limit. The sensitivity of the system is 4 mV per strain unit, but this could be increased by an order of magnitude by minor adjustments in the circuit.Constant strain-rate tensile tests were performed on natural snow at Berthoud Pass, Colorado, U.S.A., in the density range of 140-290 kg m-3. Four strain gages were mounted onto the samples to sense any non-uniform deformation which otherwise would have gone unnoticed or caused scatter in the data. The average indication of these gages was used to construct stress—strain curves for various types of snow at different strain-rates. The effect of strain-rate on the behavior of snow was studied.“Ratcheting” in the stress-strain curve in the region where the snow becomes plastic was observed first by Kinosita in his compression tests. A similar phenomenon was observed in these tension tests. It was found that directly measured strain is quite different from that which would be calculated from sample end movement. Strain softening was not observed in these tests up to total strains of 8%. The strain-rate effects found were comparable to the results of other investigators.


Sign in / Sign up

Export Citation Format

Share Document