Investigation the influence of spacer yarns orientation angle on the thermal behavior of 3D textile reinforced concrete (TRC)

Author(s):  
Sayyed Behzad Abdellahi ◽  
Sayyed Mahdi Hejazi ◽  
Hossein Hasani

Thermal behavior such as heat transfer is an important parameter for construction composites. Three-dimensional textile reinforced concrete (TRC) is one of the construction composites which is recently being used in the building industry. Therefore, in this study, the thermal behavior of three different TRC samples was investigated by a heat transfer test using an infrared method. The cementitious matrix was reinforced by 3D fabric with three different spacer yarn orientation angles. The cementitious matrix was fabricated by cement and waste stone powder. The TRC sample was put on the hot plate of the heat transfer apparatus and the temperature variations of the top surface of the sample were obtained. According to the test results, increasing the orientation angle of spacer yarns leads to a decrease in the thermal conductivity of the TRC sample and reduces heat transfer. On the other hand, a theoretical model was used to calculate the thermal conductivity and resistance coefficients of sandwich samples. Furthermore, a 3D finite element model was used to predict the heat transfer of TRC specimens. A unit cell of the TRC model was created in Abaqus software and finite element (FE) analysis was carried on a created model. Thermal conductivity and thermal resistance of samples according to FE results were calculated and compared with experimental results. FE results showed good agreement with the experimental data.

2014 ◽  
Vol 496-500 ◽  
pp. 452-455
Author(s):  
Chi Chih Shen

A three dimensional numerical simulation model of metal rolling formation is developed from the theoretical model. In this theoretical model, the two variables of element deformation and temperature variation are placed in a variable matrix. The thermal elastic plastic rigid matrix and heat transfer rigid matrix are placed in the same expansion rigid matrix. Furthermore, the numerical simulation analytical model developed in this paper was used to simulate aluminum strip rolling.


Author(s):  
Leo A. Carrilho ◽  
Jamil Khan ◽  
Michael E. Conner ◽  
Abdel Mandour ◽  
Milorad B. Dzodzo

The effects of artificial roughness for the purpose of thermal performance improvement in pressurized water nuclear reactors are investigated. The artificial roughness consists of two-dimensional ribs parallel to the turbulent flow. The fuel rod bundle subchannel is preliminarily modeled as an annulus using the finite element method in ANSYS/FLOTRAN. The Navier-Stokes equations are solved from the SST (Shear Stress Transport) turbulence model for the simulated annulus thermal-flow. The analyses are performed for ribs dimensions and pitch provided by published previous work. It is found that, heat transfer and differential pressure have similar behavior with highest heat transfer occurring at the reattachment point. The finite element model describes well the characteristics of turbulent flow in smooth and rough rod when compared to previous semi-empirical models. Next paper extends the analysis by comparing numerical results with experimental test data and sensitivity analyses for different roughness configurations.


2019 ◽  
Vol 5 (11) ◽  
pp. 2349-2358
Author(s):  
Ali Sabah Al Amli ◽  
Nadhir Al-Ansari ◽  
Jan Laue

Nonlinear analysis for reinforced concrete members (R.C.) with two types of bars also with unsaturated and saturated soils was used to represent the models. To control the corrosion in the steel bar that used in R.C. member and decrease the cost, the geogrid with steel bar reinforcement are taken in this study to determine the effect of load-deflection and stress-strain relationships. The finite element method is used to model the R.C. member, bars and soil. A three-dimensional finite element model by ABAQUS version 6.9 software program is used to predict the load versus deflection and stress versus strain response with soil. The results for the model in this study are compared with the experimental results from other research, and the results are very good. Therefore, it was concluded that the models developed in this study can accurately capture the behavior and predict the load-carrying capacity of such R.C. members with soil and the maximum stresses with strains. The results show plastic strain values in the R.C. member with saturated soil are larger than their values in unsaturated soil about (54%, 58%, and 55% and 52%) when the geogrid ratios are (without geogrid, 60%, 40% and 20%) respectively, with the same values of stresses.


2021 ◽  
Vol 261 ◽  
pp. 02042
Author(s):  
Mingqiu Xu ◽  
Jianhua Shao ◽  
Baijian Tang ◽  
Hongming Li

Order to investigate the failure effect of textile reinforced concrete (TRC) plate under bending load, the corresponding finite element model is established. By comparing the numerical simulation results with the experimental results, the rationality and feasibility of the finite element model are verified, and then the crack extension of TRC and the ultimate strain of carbon textile are analyzed. The failure mode of the slab under bending load is obtained, and it is found that the carbon textile concrete slab has better reinforcement effect, which greatly improves the safety performance of concrete members.


2016 ◽  
Vol 20 (5) ◽  
pp. 578-594 ◽  
Author(s):  
Sayyed Behzad Abdellahi ◽  
Sayyed Mahdi Hejazi ◽  
Hossein Hasani

In this study, the influence of 3D fabric on the flexural behavior of cementitious composites has been investigated. Three 3D fabric samples were produced with different spacer yarn orientation angles of 65°, 55°, and 47°. The cementitious matrix was fabricated by cement and waste stone powder. After casting of all samples, flexural test was carried out on all specimens. Results showed that cementitious sample reinforced by 3D fabric with less spacer yarn orientation angle proposed the highest flexural strength among all samples (reinforced and unreinforced samples). Moreover, finite element method was used to predict the flexural behavior of textile reinforced concrete. Finite element method results showed good agreement with the experimental data. Consequently, the maximum spacer yarn stress derived by finite element analysis was used to calculate the efficiency reinforcement factor for all the textile reinforced concrete samples.


2002 ◽  
Vol 29 (5) ◽  
pp. 662-678 ◽  
Author(s):  
Adel H Salem ◽  
Mohamed A El-Aghoury ◽  
Ezzeldin Y Sayed-Ahmed ◽  
Tarek S Moustafa

During the past decade, composite steel-free deck bridges came to reality in Canada through the construction of five bridges. The new structural system enables the construction of a concrete deck that is totally devoid of all internal steel reinforcement. Traditionally, reinforced concrete bridge decks are designed to sustain loads in flexure. The steel-free deck bridge system develops internal compressive forces "internal arching," which leads to failure by punching shear at substantially higher loads than the flexural design load. The fibre-reinforced concrete deck is usually attached to the steel girders through flexible shear connectors. These steel girders are transversely tied together by steel straps and cross frames. In this paper, the concept of the new bridge system is briefly discussed. The generations of the deck slabs are introduced. Brief outlines of the bridges built to date with this new technology are presented. A three-dimensional finite element model is then proposed to study the behaviour of the main structural component of the new system. The model is verified against previous experimental results and is used to perform a parametric study on some aspects which are thought to significantly affect the behaviour of the new steel-free deck bridge system.Key words: bridges, composite girders, finite element method, steel-free deck, steel straps.


2013 ◽  
Vol 438-439 ◽  
pp. 505-509 ◽  
Author(s):  
Gui Rong Liu ◽  
Yu Xin Wang ◽  
Shun Bo Zhao

Nonlinear three-dimensional finite element method was used to analyze the crack pattern and stress distribution of reinforced concrete frame exterior joints with T-section columns. On the basis of the smear-crack approach, the cracking of reinforced concrete joint was predicted. And the capability of finite element model was demonstrated by comparing the predictions with test results. Further analysis was carried out to study the effect of axial load ratio and limb length on stresses of the joints. It is seen that the stresses of joint were influenced by these two factors, which should be considered in the design of reinforced concrete joint with T-section column.


1996 ◽  
Vol 24 (4) ◽  
pp. 339-348 ◽  
Author(s):  
R. M. V. Pidaparti

Abstract A three-dimensional (3D) beam finite element model was developed to investigate the torsional stiffness of a twisted steel-reinforced cord-rubber belt structure. The present 3D beam element takes into account the coupled extension, bending, and twisting deformations characteristic of the complex behavior of cord-rubber composite structures. The extension-twisting coupling due to the twisted nature of the cords was also considered in the finite element model. The results of torsional stiffness obtained from the finite element analysis for twisted cords and the two-ply steel cord-rubber belt structure are compared to the experimental data and other alternate solutions available in the literature. The effects of cord orientation, anisotropy, and rubber core surrounding the twisted cords on the torsional stiffness properties are presented and discussed.


Sign in / Sign up

Export Citation Format

Share Document