An experimental study on optimal spark timing control for improved performance of a flex fuel vehicle engine

Author(s):  
Junsang Yoo ◽  
Taeyong Lee ◽  
Pyungsik Go ◽  
Yongseok Cho ◽  
Kwangsoon Choi ◽  
...  

In the American continent, the most frequently used alternative fuel is ethanol. Especially in Brazil, various blends of gasoline–ethanol fuels are widely spread. The vehicle using blended fuel is called flexible fuel vehicle. Because of several selections for the blending ratios in gas stations, the fuel properties may vary after refueling depending on a driver’s selection. Also, the combustion characteristics of the flexible fuel vehicle engine may change. In order to respond to the flexible fuel vehicle market in Brazil, a study on blended fuels is performed. The main purpose of this study is to enhance performance of the flexible fuel vehicle engine to target Brazilian market. Therefore, we investigated combustion characteristics and optimal spark timings of the blended fuels with various blending ratios to improve the performance of the flexible fuel vehicle engine. As a tool for prediction of the optimal spark timing for the 1.6L flexible fuel vehicle engine, the empirical equation was suggested. The validity of the equation was investigated by comparing the predicted optimal spark timings with the stock spark timings through engine tests. When the stock spark timings of E0 and E100 were optimal, the empirical equation predicted the actual optimal spark timings for blended fuels with a good accuracy. In all conditions, by optimizing spark timing control, performance was improved. Especially, torque improvements of E30 and E50 fuels were 5.4% and 1.8%, respectively, without affecting combustion stability. From these results, it was concluded that the linear interpolation method is not suitable for flexible fuel vehicle engine control. Instead of linear interpolation method, optimal spark timing which reflects specific octane numbers of gasoline–ethanol blended fuels should be applied to maximize performance of the flexible fuel vehicle engine. The results of this study are expected to save the effort required for engine calibration when developing new flexible fuel vehicle engines and to be used as a basic strategy to improve the performance of other flexible fuel vehicle engines.

2002 ◽  
Vol 82 (1) ◽  
pp. 64-78 ◽  
Author(s):  
Sari Metsämäki ◽  
Jenni Vepsäläinen ◽  
Jouni Pulliainen ◽  
Yrjö Sucksdorff

2012 ◽  
Vol 588-589 ◽  
pp. 1312-1315
Author(s):  
Yi Kun Zhang ◽  
Ming Hui Zhang ◽  
Xin Hong Hei ◽  
Deng Xin Hua ◽  
Hao Chen

Aiming at building a Lidar data interpolation model, this paper designs and implements a GA-BP interpolation method. The proposed method uses genetic method to optimize BP neural network, which greatly improves the calculation accuracy and convergence rate of BP neural network. Experimental results show that the proposed method has a higher interpolation accuracy compared with BP neural network as well as linear interpolation method.


Author(s):  
Shunbo Lei ◽  
Johanna Mathieu ◽  
Rishee Jain

Abstract Commercial buildings generally have large thermal inertia, and thus can provide services to power grids (e.g., demand response (DR)) by modulating their Heating, Ventilation, and Air Conditioning (HVAC) systems. Shifting consumption on timescales of minutes to an hour can be accomplished through temperature setpoint adjustments that affect HVAC fan consumption. Estimating the counterfactual baseline power consumption of HVAC fans is challenging but is critical for assessing the capacity and participation of DR from HVAC fans in grid-interactive efficient buildings (GEBs). DR baseline methods have been developed for whole-building power profiles. This work evaluates those methods on total HVAC fan power profiles, which have different characteristics than whole-building power profiles. Specifically, we assess averaging methods (e.g., Y-day average, HighXofY, and MidXofY, with and without additive adjustments), which are the most commonly used in practice, and a least squares-based linear interpolation method recently developed for baselining HVAC fan power. We use empirical submetering data from HVAC fans in three University of Michigan buildings in our assessment. We find that the linear interpolation method has a low bias and by far the highest accuracy, indicating that it is potentially the most effective existing baseline method for quantifying the effects of short-term load shifting of HVAC fans. Overall, our results provide new insights on the applicability of existing DR baseline methods to baselining fan power and enable more widespread contribution of GEBs to DR and other grid services.


2011 ◽  
Vol 243-249 ◽  
pp. 93-96
Author(s):  
Ling Ling Jia ◽  
Hang Jing ◽  
Yang Han

In this paper, the successive computation formulas of ice response spectrum are derived and deduced based on the assumption of nonlinear interpolation method. And with the new way, the ice response spectrum of two true different ice temporal curves are analysized. The results indicate that the ice spectra value obtained by the new method is a litter greater than the values of the called precision method. And the error of the acceleration response spectra amplification coefficient is only 0.53%. therefore, this ice response spectra method presented by this paper can meet the request of precision. As this method is more preciser than linear interpolation method, it can be used in the design of ice resistance.


Author(s):  
Aifang Zhou ◽  
Kinchuen Hui

In this paper, a traction superimposition method for simulating the deformation of multicomponent elastic models with different interfacial mesh densities is introduced. By applying linear interpolation method, the displacement data can be transferred between nonconforming interfaces. With the application of energy conservation principle, a relationship between the forces on different surfaces is constructed. By considering the displacement compatibility conditions together with force equilibrium conditions over the common interfaces, a relation between different components of a system is established. However, this interpolation method is only applicable to object components with the same or similar mesh densities. For models with different mesh densities between neighboring components, abnormities arise in the deformation. The causes of these abnormities are parsed by experiments and theoretical analysis. To eliminate the abnormal deformation, a traction superimposition method is proposed to enforce the force constraints on the interfaces. Experimental results are provided to verify this approach.


Sign in / Sign up

Export Citation Format

Share Document