scholarly journals On the drag reduction of road vehicles with trailing edge-integrated lobed mixers

Author(s):  
Aleksandra Anna Rejniak ◽  
Alvin Gatto

Trailing edge-integrated lobed-mixing geometries are proposed as a viable method for road vehicle aerodynamic drag reduction. Experiments are conducted on a 1/24th-scale model, representative of a Heavy Goods Vehicle, at a width-based Reynolds number of 2.8 × 105. A broad range of pitches and penetration angle values is examined, with detailed comparisons also made to high-aspect-ratio rear tapering. Changes to mean drag coefficients and wake velocities are evaluated and assessed from both the time-independent and time-dependent perspectives. Results show significant drag reductions for lower pitches at higher penetration angles, where the performance of regular tapering is found substantially degraded. The mechanisms responsible for drag reduction are identified to be reductions in the wake size and a shift in the vertical wake balance. The former is shown to be a result of the enhancement in inboard momentum close to the trailing edges through the generation of pairs of counter-rotating streamwise vortices, with the latter attributed to the downstream evolution of the vortices. Overall, these results identify such geometries to be suitable for improving vehicle drag while minimising the losses in internal space.

2012 ◽  
Author(s):  
Seung-On Kang ◽  
Jun-Ho Cho ◽  
Sang-Ook Jun ◽  
Hoon-Il Park ◽  
Ki-Sun Song ◽  
...  

2012 ◽  
Vol 13 (4) ◽  
pp. 583-592 ◽  
Author(s):  
S. O. Kang ◽  
S. O. Jun ◽  
H. I. Park ◽  
K. S. Song ◽  
J. D. Kee ◽  
...  

Author(s):  
Mahmoud Khaled ◽  
Fabien Harambat ◽  
Anthony Yammine ◽  
Hassan Peerhossaini

The present paper exposes the study of the cooling system circulation effect on the external aerodynamic forces. We report here aerodynamic force measurements carried out on a simplified vehicle model in wind tunnel. Tests are performed for different airflow configurations in order to detect the parameters that can affect the aerodynamic torsor and to confirm others previously suspected, especially the air inlets localization, the air outlet distributions and the underhood geometry. The simplified model has flat and flexible air inlets and several types of air outlet, and includes in its body a real cooling system and a simplified engine block that can move in the longitudinal and lateral directions. The results of this research are generic and can be applied to any new car design. Results show configurations in which, with respect to the most commonly adopted underhood geometries, the overall drag coefficient can be decreased by 2%, the aerodynamic cooling drag coefficient by more than 50% and the lift coefficient by 5%. Finally, new designs of aerodynamic drag reduction, based on the combined effects of the different investigated parameters, are proposed.


Sign in / Sign up

Export Citation Format

Share Document