Research on dynamic load spectrum of electric vehicle transmission system based on underdamping characteristic

Author(s):  
Du Guo ◽  
Xing Chen ◽  
Yanli Yin ◽  
Hui Liu

Overall, the electric vehicle transmission system shows an underdamped characteristic. Under changeable road conditions and high-frequency response for the motor, the resulting dynamic load environment may cause multiple failure modes, such as contact fatigue failure and bending fatigue fracture, for the transmission component, which limits the electric vehicle transmission component lifespan and system reliability. To reflect the dynamic load characteristics of the electric vehicle transmission system using a permanent magnet synchronous motor as a power source and accurately calculate the dynamic load of the transmission system, a high-speed helical gear-rotor-bearing coupling mechanical model for the electric vehicle transmission system was built based on simulating actual operation working conditions of the electric vehicle and considering the external load excitation caused by the Electromagnetic torque of the permanent magnet synchronous motor and vehicle driving resistant change as well as internal excitation caused by gear time-varying meshing rigidness and meshing error. Through simulation calculation of the mechanical model, the dynamic meshing force of the gear pair and dynamic contact force of the support bearing was obtained. Based on the Hertz contact theory, the stress-time history was obtained for the key parts, the rain flow counting method was adopted for the statistics collection and analysis of the stress-time history, and the fatigue load spectrum for various key parts of the transmission system was obtained. The result lays a foundation for the fatigue life prediction and reliability analysis for the pure electric vehicle transmission system.

Sign in / Sign up

Export Citation Format

Share Document