Comparison of different modeling methods toward predictive capability evaluation of the bonding strength of wood laminated products

Author(s):  
Morteza Nazerian ◽  
Seyed Ali Razavi ◽  
Ali Partovinia ◽  
Elham Vatankhah ◽  
Zahra Razmpour

The main aim of this study is usability evaluation of different approaches, including response surface methodoloy, adaptive neuro-fuzzy inference system, and artificial neural network models to predict and evaluate the bonding strength of glued laminated timber (glulam) manufactured using walnut wood layers and a natural adhesive (oxidized starch adhesive), with respect to this fact that using the modified starch can decrease the formaldehyde emission. In this survey, four variables taken as the input data include the molar ratio of formaldehyde to urea (1.12–1.52), nanocellulose content (0%–4%, based on the dry weight of the adhesive), the mass ratio of the oxidized starch adhesive to the urea formaldehyde resin (30:70–70:30), and the press time (4–8 min). In order to find the best predictive performance of each selected evaluation approach, different membership functions were used. The optimal results were obtained when the molar ratio, nanocellulose content, mass ratio of the oxidised starch, and press time were set at 1.22, 3%, 70:30, and 7 min, respectively. Based on the performance criteria including root mean square error (RMSE) and mean absolute percentage error (MAPE) obtained from the modeling of response surface methodology, adaptive neuro-fuzzy inference network, and artificial neural network, it became evident that response surface methodology could offer a better prediction of the response with the lowest level of errors. Beside, artificial neural network and adaptive neuro-fuzzy inference system support the response surface methodology approach to evaluate bonding strength response with high precision as well as to determine the optimal point in fabrication of laminated products.

2015 ◽  
Vol 9 ◽  
pp. 60-67 ◽  
Author(s):  
Marziyeh Ramzi ◽  
Mahdi Kashaninejad ◽  
Fakhreddin Salehi ◽  
Ali Reza Sadeghi Mahoonak ◽  
Seyed Mohammad Ali Razavi

Energies ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 211
Author(s):  
Aamer Bilal Asghar ◽  
Saad Farooq ◽  
Muhammad Shahzad Khurram ◽  
Mujtaba Hussain Jaffery ◽  
Krzysztof Ejsmont

Circulating Fluidized Bed gasifiers are widely used in industry to convert solid fuel into liquid fuel. The Artificial Neural Network and neuro-fuzzy algorithm have immense potential to improve the efficiency of the gasifier. The main focus of this article is to implement the Artificial Neural Network and Adaptive Neuro-Fuzzy Inference System modeling approach to estimate solid circulation rate at high pressure in the Circulating Fluidized Bed gasifier. The experimental data is obtained on a laboratory scale prototype in the Chemical Engineering laboratory at COMSATS University Islamabad. The Artificial Neural Network and Adaptive Neuro-Fuzzy Inference System use four input features—pressure, single mean diameter, total valve opening and riser dp—and one output feature mass flow rate with multiple neurons in the hidden layers to estimate the flow of solid particles in the riser. Both Artificial Neural Network and Adaptive Neuro-Fuzzy Inference System model worked on 217 data samples and output results are compared based on their Mean Square Error, Regression analysis, Mean Absolute Error and Mean Absolute Percentage Error. The experimental results show the effectiveness of Adaptive Neuro-Fuzzy Inference System (Mean Square Error is 0.0519 and Regression analysis R2=1.0000), as it outperformed Artificial Neural Network in terms of accuracy (Mean Square Error is 1.0677 and Regression analysis R2=0.9806).


Sign in / Sign up

Export Citation Format

Share Document