Field validation of a three-dimensional dynamic track-subgrade interaction model

Author(s):  
Yin Gao ◽  
Hai Huang ◽  
Carlton L Ho ◽  
Aaron Judge

An efficient three-dimensional dynamic track-subgrade interaction model has been formulated and then validated by field investigations at various field and traffic conditions including the effect of different train speeds and types of trains. The model contains a two-dimensional discrete support track model and three-dimensional computation-efficient finite element soil subgrade model. In the two-dimensional track model, the rail beam is modelled as an Euler-Bernoulli beam. The two-dimensional track model discretizes the tie and ballast as rigid bodies with designated spacing. The three-dimensional finite element subgrade model is simulated by plane-stress quadrilateral finite elements. The longitudinal direction of the subgrade model is expanded in the frequency domain and is assumed to be homogeneous. Therefore, the computing time could be largely reduced. A moving dynamic loading is applied on top of the rail. The model is capable of taking train speed variations and the profile change of the cross section into consideration. Multiple field instrumentation tests covering the two train types and different train speeds at the test site were then conducted to verify the accuracy of the dynamic track-subgrade interaction model. Testing site is located on the Amtrak's highest speed line (Northeast Corridor: 250 km/h) near Kingston, Rhode Island in the United States. A method to obtain the tie deflection from accelerometer data at Kingston was proposed and then validated at another site on the Northeast Corridor. Tie deflections measured in the field were compared with those predicted by the three-dimensional dynamic track-subgrade interaction model. It is concluded that this model can predict track performance accurately for the Kingston site.

Author(s):  
S. Khajehpour ◽  
R. G. Sauve´ ◽  
N. Badie

A method has been developed to incorporate the local three-dimensional shell behavior of two concentric tubes in the two-dimensional beam modeling of the problem. The two dimensional modeling of fuel channels in CANDU pressurized heavy water nuclear reactors is used in lieu of a more accurate three dimensional finite element approach in order to reduce the on-line simulation time which greatly affects the SLAR (Spacer Location And Repositioning) maintenance operation cost during outage. However, effort must be made to include the three-dimensional shell behavior of these channels into the two-dimensional modeling. In recent studies a nonlinear force-dependent model for contact stiffness between the calandria tube and pressure tube has been developed. However, local deformation of calandria the tube at spacer locations due to in-reactor creep leads to settling of the spacer into the calandria tube that consequently reduces the gap between the two tubes. In this work, the effect of local deformation (elastic and creep) of calandria tubes on modeling of contact at spacer locations is assessed using a three dimensional finite element code. The result is incorporated into a two-dimensional beam model of the problem as a reduction in size of the spacers that separate the two tubes. It is shown that the proposed method increases the accuracy of prediction of contact time and the spacer. In general, the method described in this paper suggests a way to incorporate local shell deformation into beam models of slender shell structure.


1999 ◽  
Vol 36 (02) ◽  
pp. 102-112
Author(s):  
Michael D. A. Mackney ◽  
Carl T. F. Ross

Computational studies of hull-superstructure interaction were carried out using one-, two-and three-dimensional finite element analyses. Simplification of the original three-dimensional cases to one- and two-dimensional ones was undertaken to reduce the data preparation and computer solution times in an extensive parametric study. Both the one- and two-dimensional models were evaluated from numerical and experimental studies of the three-dimensional arrangements of hull and superstructure. One-dimensional analysis used a simple beam finite element with appropriately changed sections properties at stations where superstructures existed. Two-dimensional analysis used a four node, first order quadrilateral, isoparametric plane elasticity finite element, with a corresponding increase in the grid domain where the superstructure existed. Changes in the thickness property reflected deck stiffness. This model was essentially a multi-flanged beam with the shear webs representing the hull and superstructure sides, and the flanges representing the decks One-dimensional models consistently and uniformly underestimated the three-dimensional behaviour, but were fast to create and run. Two-dimensional models were also consistent in their assessment, and considerably closer in predicting the actual behaviours. These models took longer to create than the one-dimensional, but ran in very much less time than the refined three-dimensional finite element models Parametric insights were accomplished quickly and effectively with the simplest model and processor, but two-dimensional analyses achieved closer absolute measure of the displacement behaviours. Although only static analysis with simple loading and support conditions were presented, it is believed that similar benefits would be found for other loadings and support conditions. Other engineering components and structures may benefit from similarly judged simplification using one- and two-dimensional models to reduce the time and cost of preliminary design.


Author(s):  
Laura Galuppi ◽  
Gianni Royer-Carfagni

Prandtl's membrane analogy for the torsion problem of prismatic homogeneous bars is extended to multi-material cross sections. The linear elastic problem is governed by the same equations describing the deformation of an inflated membrane, differently tensioned in regions that correspond to the domains hosting different materials in the bar cross section, in a way proportional to the inverse of the material shear modulus. Multi-connected cross sections correspond to materials with vanishing stiffness inside the holes, implying infinite tension in the corresponding portions of the membrane. To define the interface constrains that allow to apply such a state of prestress to the membrane, a physical apparatus is proposed, which can be numerically modelled with a two-dimensional mesh implementable in commercial finite-element model codes. This approach presents noteworthy advantages with respect to the three-dimensional modelling of the twisted bar.


Author(s):  
Xianbin Du ◽  
Youqun Zhao ◽  
Qiang Wang ◽  
Hongxun Fu

An innovative non-pneumatic tyre called the mechanical elastic wheel is introduced; significant challenges exist in the prediction of the dynamic interaction between this mechanical elastic wheel and soil containing an obstacle owing to its highly non-linear properties. To explore the mechanical properties of the mechanical elastic wheel and the soil, the finite element method is used, and a non-linear three-dimensional finite element wheel–soil interaction model is also established. Hyperelastic incompressible rubber, which is one of the main materials of the mechanical elastic wheel, is analysed using the Mooney–Rivlin model. The modified Drucker–Prager cap plasticity constitutive law is utilized to describe the behaviour of the soil, and the obstacle is represented as an elastic body. Simulations with different rotational speeds of the mechanical elastic wheel were conducted. The stress distribution and the displacement of the mechanical elastic wheel and the soil were obtained, and the effects of different rotational speeds on the displacement, the velocity and the acceleration of the hub centre are presented and discussed in detail. These results can provide useful information for optimization of the mechanical elastic wheel.


Author(s):  
Jianmin Xu ◽  
Zhaohong Song

This paper is about blade flutter in a tuned rotor. With the aid of the combination of three dimensional structural finite element method, two dimensional aerodynamical finite difference method and strip theory, the quasi-steady models in which two degrees of freedom for a single wing were considered have been extended to multiple degrees of freedom for the whole blade in a tuned rotor. The eigenvalues solved from the blade motion equation have been used to judge whether the system is stable or not. The calculating procedure has been formed and using it the first stage rotating blades of a compressor where flutter had occurred, have been predicted. The numerical flutter boundaries have good agreement with the experimental ones.


Author(s):  
Antoinette Maniatty ◽  
Karel Matous ◽  
Jing Lu

A mesoscale model for predicting the evolution of the grain structure and the mechanical response of polycrystalline aggregates subject to large deformations, such as arise in bulk metal forming processes, is presented. The gain structures modeled are either experimentally observed or are computer generated and statistically similar to experimentally observed grain structures. In order to capture the inhomogeneous deformations and the resulting grain structure characteristics, a discretized model at the mesoscale is used. This work focuses on Al-Mg-Si alloys. Scale bridging is used to link to the macroscale. Examples involving two-dimensional grain structures and current work on three-dimensional grain structures are presented. The present work provides a framework to model the mesoscopic behavior and interactions between grains during finite strains. The mesoscale is characterized by a statistically representative voluem element (RVE), which contains the grains of a polycrystal. Experimentally observed grain structures are used both as models directly (for two-dimensional cases) and to define statistical characteristics to verify the similarity of computer generated grain structures (for three-dimensional cases). A Monte Carlo method based on the Potts model is used to define three-dimensional grain structures. In order to make the representative grain structure appropriate for scale-bridging, we design them with periodicity. A three-field, updated Lagrangian finite element formulation with a kinematic split of the deformation gradient into volume preserving and volumetric parts is used to create a stable finite element method in the context of nearly incompressible behavior. A fully implicit two-level backward Euler integration scheme is derived for integrating the constitutive equations, and consistent linearization is used in Newton’s method to solve the resulting equations. In addition, the average of the boundary conditions and bulk response must match the macroscopically measured bulk response. To illustrate and verify the proposed model, we analyze examples involving two-dimensional grain structures and compare with results from a Taylor model. Current work on three-dimensional grain structures ara also presented.


Geosciences ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 76
Author(s):  
Ashraf Hefny ◽  
Mohamed Ezzat Al-Atroush ◽  
Mai Abualkhair ◽  
Mariam Juma Alnuaimi

The complexities and the economic computational infeasibility associated in some cases, with three-dimensional finite element models, has imposed a motive for many investigators to accept numerical modeling simplification solutions such as assuming two-dimensional (2D) plane strain conditions in simulation of several supported-deep excavation problems, especially for cases with a relatively high aspect ratio in plan dimensions. In this research, a two-dimensional finite element model was established to simulate the behavior of the supporting system of a large-scale deep excavation utilized in the construction of an underground metro station Rod El Farrag project (Egypt). The essential geotechnical engineering properties of soil layers were calculated using results of in-situ and laboratory tests and empirical correlations with SPT-N values. On the other hand, a three-dimensional finite element model was established with the same parameters adopted in the two-dimensional model. Sufficient sensitivity numerical analyses were performed to make the three-dimensional finite element model economically feasible. Results of the two-dimensional model were compared with those obtained from the field measurements and the three-dimensional numerical model. The comparison results showed that 3D high stiffening at the primary walls’ corners and also at the locations of cross walls has a significant effect on both the lateral wall deformations and the neighboring soil vertical settlement.


Sign in / Sign up

Export Citation Format

Share Document