Experimental and numerical investigations of the dynamic responses of an asymmetrical arch railway bridge

Author(s):  
Hongye Gou ◽  
Yannian He ◽  
Wen Zhou ◽  
Yi Bao ◽  
Genda Chen

The dynamic responses of an asymmetrical arch railway bridge subjected to moving trains are experimentally and numerically investigated in this study. The strains, displacements and accelerations at critical sections of the bridge were measured at different speeds of trains. A three-dimensional finite element model of the bridge–vehicle coupling system was established to understand the measured dynamic responses and was validated against the experimental results. The numerical model was used to analyze the influence of asymmetry on the dynamic responses of the bridge and the safety and ride comfort of trains. The results indicate that the dynamic responses of the bridge increase with the train speed. Braking of the train has the largest impact on the vertical dynamic displacement of the bridge. The maximum dynamic strain is in the arch rib. The longer half arch demonstrated much larger counterforce and dynamic responses than those of the shorter half arch, while the symmetrical structures tend to exhibit good symmetry. The asymmetrical arrangement of the bridge reduces the structural stiffness.

2008 ◽  
Vol 22 (09n11) ◽  
pp. 1403-1408 ◽  
Author(s):  
DONG-HYUN KIM ◽  
YU-SUNG KIM

In this study, nonlinear crash analyses have been conducted for the skid landing gear of helicopter. The realistic configuration of skid landing gear system is considered. Detailed three-dimensional finite element model with variable thickness and material nonlinearity is constructed for required impact design conditions. Advanced computational approach is used to conduct nonlinear transient impact dynamic analyses for different collision models. Characteristics of impact dynamic responses due to the ground crash are practically investigated in detail. It is also shown that the exact consideration of friction effect is very important to accurately predict the crash behavior of the skid type landing gear system. Finally, two typical landing conditions are analyzed and correlated with drop test results.


2013 ◽  
Vol 773 ◽  
pp. 193-198 ◽  
Author(s):  
Jing Li ◽  
Jian Yun Chen ◽  
Xiao Bo Chen

As a kind of high-rise structure, the offshore wind turbine is sensitive to wind load; it can generate strong dynamic responses to the excitation of typhoon. In this paper, a three-dimensional finite element model of offshore wind turbine is established with ADINA, responses under strong wind excitation are numerically simulated and performed subsequently. The fluctuating wind velocity time series are simulated by the method of HSM (harmony superposition method). Based on the modal and tine-history analyses of the structures together with self-vibration character, the pendulum damper is employed to control the resulting undesirable vibrations that are induced by wind. With the damper installed, the displacement and acceleration of the tower are reduced by as much as 40% using 1% of the total effective mass.


2007 ◽  
Vol 35 (3) ◽  
pp. 226-238 ◽  
Author(s):  
K. M. Jeong ◽  
K. W. Kim ◽  
H. G. Beom ◽  
J. U. Park

Abstract The effects of variations in stiffness and geometry on the nonuniformity of tires are investigated by using the finite element analysis. In order to evaluate tire uniformity, a three-dimensional finite element model of the tire with imperfections is developed. This paper considers how imperfections, such as variations in stiffness or geometry and run-out, contribute to detrimental effects on tire nonuniformity. It is found that the radial force variation of a tire with imperfections depends strongly on the geometrical variations of the tire.


2021 ◽  
Vol 11 (5) ◽  
pp. 2225
Author(s):  
Fu Wang ◽  
Guijun Shi ◽  
Wenbo Zhai ◽  
Bin Li ◽  
Chao Zhang ◽  
...  

The steel assembled support structure of a foundation pit can be assembled easily with high strength and recycling value. Steel’s performance is significantly affected by the surrounding temperature due to its temperature sensitivity. Here, a full-scale experiment was conducted to study the influence of temperature on the internal force and deformation of supporting structures, and a three-dimensional finite element model was established for comparative analysis. The test results showed that under the temperature effect, the deformation of the central retaining pile was composed of rigid rotation and flexural deformation, while the adjacent pile of central retaining pile only experienced flexural deformation. The stress on the retaining pile crown changed little, while more stress accumulated at the bottom. Compared with the crown beam and waist beam 2, the stress on waist beam 1 was significantly affected by the temperature and increased by about 0.70 MPa/°C. Meanwhile, the stress of the rigid panel was greatly affected by the temperature, increasing 78% and 82% when the temperature increased by 15 °C on rigid panel 1 and rigid panel 2, respectively. The comparative simulation results indicated that the bending moment and shear strength of pile 1 were markedly affected by the temperature, but pile 2 and pile 3 were basically stable. Lastly, as the temperature varied, waist beam 2 had the largest change in the deflection, followed by waist beam 1; the crown beam experienced the smallest change in the deflection.


2007 ◽  
Vol 129 (6) ◽  
pp. 1028-1034 ◽  
Author(s):  
Liang Wang ◽  
Sergio Felicelli

A three-dimensional finite element model was developed to predict the temperature distribution and phase transformation in deposited stainless steel 410 (SS410) during the Laser Engineered Net Shaping (LENS™) rapid fabrication process. The development of the model was carried out using the SYSWELD software package. The model calculates the evolution of temperature in the part during the fabrication of a SS410 plate. The metallurgical transformations are taken into account using the temperature-dependent material properties and the continuous cooling transformation diagram. The ferritic and martensitic transformation as well as austenitization and tempering of martensite are considered. The influence of processing parameters such as laser power and traverse speed on the phase transformation and the consequent hardness are analyzed. The potential presence of porosity due to lack of fusion is also discussed. The results show that the temperature distribution, the microstructure, and hardness in the final part depend significantly on the processing parameters.


Sign in / Sign up

Export Citation Format

Share Document