Numerical method for fatigue life of plane bolted joints under thermal load

Author(s):  
Ziyun You ◽  
Yu Fang ◽  
Xintian Liu ◽  
Tie Chen ◽  
Wenjing Li ◽  
...  

In fatigue test, the fatigue life of metal components is affected by many factors, such as test temperature, stress ratio and loading frequency. In order to study the influence of temperature on fatigue life of bolted joints, thermal stress and fast coefficient are introduced. A numerical method of fatigue crack initiation life is proposed based on Manson-Coffin strain fatigue formula. The crack initiation life of 2024 aluminum alloy at different temperatures can be obtained by this method, which provides a theoretical basis for the fatigue life prediction of metals. Then, the stress severity factor SSF is introduced to calculate fatigue life of plane bolted joints. The data obtained from the model show that the crack initiation life of aluminum alloy specimen decreases significantly with test temperature rises, the same as the fatigue life of bolted joints.

2010 ◽  
Vol 452-453 ◽  
pp. 601-604
Author(s):  
Muhammed Sohel Rana ◽  
Md. Shafiul Ferdous ◽  
Chobin Makabe ◽  
Masaki Fujikawa

The enhancement method of fatigue life and the crack initiate and growth behavior of a holed specimen was investigated by using the 2024 Aluminum alloy and 0.45% Carbon steel. The purpose of present study is to propose a simple technical method for enhancement of fatigue life in a notched specimen. Also, the effect of local plastic deformation by cold work on fatigue crack initiation behavior was examined. This paper presents a basic experimental kinematic cold expansion method by inserting and removing a pin through the specimen hole. The shape of cross-section of pin was a circle or an ellipse. It was shown that the fatigue life of the specimen with the cold-worked hole was longer than that of the specimen with non-cold-worked hole for the case of same stress level in aluminum alloy and carbon steel. Also, the fatigue strength was higher in the case of the cold expanded hole. In this study, a methodology of lengthening of fatigue life of holed specimen is shown. Also, the improvement conditions of fatigue life were significantly affected by shape of pin, local hardening and residual stress conditions. The fatigue life improvement of the damaged component of structures was studied.


Author(s):  
Masao Itatani ◽  
Keisuke Tanaka ◽  
Isao Ohkawa ◽  
Takehisa Yamada ◽  
Toshiyuki Saito

Fatigue tests of smooth and notched round bars of austenitic stainless steels SUS316NG and SUS316L were conducted under cyclic tension and cyclic torsion with and without static tension. Fatigue strength under fully reversed (R=−1) cyclic tension once increased with increasing stress concentration factor up to Kt=1.5, but it decreased from Kt=1.5 to 2.5. Fatigue life increased with increasing stress concentration under pure cyclic torsion, while it decreased with increasing stress concentration under cyclic torsion with static tension. From the measurement of fatigue crack initiation and propagation lives using electric potential drop method, it was found that the crack initiation life decreased with increasing stress concentration and the crack propagation life increased with increasing stress concentration under pure cyclic torsion. Under cyclic torsion with static tension, the crack initiation life also decreased with increasing stress concentration but the crack propagation life decreased or not changed with increasing stress concentration then the total fatigue life of sharper notched specimen decreased. It was also found that the fatigue life of smooth specimen under cyclic torsion with static tension was longer than that under pure cyclic torsion. This behavior could be explained based on the cyclic strain hardening under non-proportional loading and the difference in crack path with and without static tension.


2005 ◽  
Vol 128 (4) ◽  
pp. 889-895 ◽  
Author(s):  
K. S. Chan ◽  
M. P. Enright

This paper summarizes the development of a probabilistic micromechanical code for treating fatigue life variability resulting from material variations. Dubbed MICROFAVA (micromechanical fatigue variability), the code is based on a set of physics-based fatigue models that predict fatigue crack initiation life, fatigue crack growth life, fatigue limit, fatigue crack growth threshold, crack size at initiation, and fracture toughness. Using microstructure information as material input, the code is capable of predicting the average behavior and the confidence limits of the crack initiation and crack growth lives of structural alloys under LCF or HCF loading. This paper presents a summary of the development of the code and highlights applications of the model to predicting the effects of microstructure on the fatigue crack growth response and life variability of the α+β Ti-alloy Ti-6Al-4V.


Author(s):  
Makoto Higuchi ◽  
Katsumi Sakaguchi

Low cycle fatigue life of structural materials in LWR plants decreases remarkably in elevated temperature water depending on strain rate, temperature, water chemistry and material properties. The maximum reduction rate in fatigue life for carbon and low alloy steels is over 100 in severe conditions. Fatigue life is composed of fatigue crack initiation life and consequent propagation life. It is important to know the proportion of crack initiation life to propagation life in water environment when developing a model to estimate fatigue crack initiation life. The beachmark imprinting method was used to monitor fatigue crack initiation and consequent propagation. Environmental test conditions varied widely from severely accelerated conditions of high temperature and dissolved oxygen to mild conditions of lower temperature and oxygen. Fatigue crack initiation life could be determined using the beachmark imprinting method for all test conditions. Based on obtained test results, the susceptibility of each parameter in NWC and the relationships between NWC/NW and environmental fatigue life correction factor Fen under various conditions are discussed, but a good relationship could not be detected due to widely scattered data and a model to predict fatigue crack initiation life could not be proposed.


2006 ◽  
Vol 324-325 ◽  
pp. 363-366
Author(s):  
Rui Bao ◽  
Jian Yu Zhang ◽  
Bin Jun Fei

The influence of environmental corrosion on fatigue life of 2024-T3 aluminum alloy is investigated in this paper. Experiments with center-hole specimens and CC(T) specimens are conducted and reported. The test result shows that the corrosion influence is becoming serious while the environmental causticity is increasing, and the influence on crack initiation life is greater than that on crack propagation life. Analysis of the test data also indicates that the environmental causticity enlarges the dispersivity of fatigue life. Using the corrosion-modification-factor obtained by eigenvalue or mean value to prediction the fatigue life with high reliability will cause an unconservative conclusion.


Author(s):  
K. S. Chan ◽  
M. P. Enright

This paper summarizes the development of a probabilistic micromechanical code for treating fatigue life variability resulting from material variations. Dubbed MicroFaVa (Micromechanical Fatigue Variability), the code is based on a set of physics-based fatigue models that predict fatigue crack initiation life, fatigue crack growth life, fatigue limit, fatigue crack growth threshold, crack size at initiation, and fracture toughness. Using microstructure information as material input, the code is capable of predicting the average behavior and the confidence limits of the crack initiation and crack growth lives of structural alloys under LCF or HCF loading. This paper presents a summary of the development of the code and highlights applications of the model to predicting the effects of microstructure on the fatigue crack growth response and life variability of the α + β Ti-alloy Ti-6Al-4V.


2010 ◽  
Vol 654-656 ◽  
pp. 1638-1641 ◽  
Author(s):  
Dong Hyung Lee ◽  
Seok Jin Kwon ◽  
Jung Won Seo ◽  
Won Hee You

The objective of this study is to clarify the effect of hub contact shape on contact pressure and fatigue life with regard to the selection of a suitable taper design near the end of the fit. A numerical asymmetric-axisymmetric finite element model was developed in order to determine the contact stress state of press-fitted shaft by using four types of tapered contact surfaces on the hub. The variations of fatigue crack initiation life according to the change of tapered contact surfaces on the hub were evaluated by using the Smith-Watson-Topper (SWT) multiaxial fatigue criterion. As the result, comparing with the contact pressure and the fatigue crack initiation life, maximum decrease of contact pressure and maximum increase of fatigue crack initiation life were obtained for the 1/400 m/m tapered hub subjected to a bending load near the fretting fatigue limit. Furthermore, as the change of bending load, the optimal amout of taper in hub which fatigue life gets into maximum is varied. Therefore, we suggest that the best performance, in terms of pressure distribution and fatigue life of press fit, can be obtained by using a proper taper values for the hub element.


2018 ◽  
Vol 165 ◽  
pp. 10014
Author(s):  
Melanie Fiedler ◽  
Michael Vormwald

In 2018 the German Research Association of Mechanical Engineering (FKM) will present a new guideline for calculating the fatigue crack initiation life of structures and components . The user of this guideline … is able to calculate the fatigue life for crack initiation for structures of steel, cast steel and aluminium alloy … has to perform an elastic FE-calculation and gets the quality of an elastic-plastic calculation … is able to determine the cyclic material parameters and the damage parameter Wöhler curve by the ultimate tensile strength Rm … is able to calculate the fatigue life in HCF and LCF for constant and variable amplitude loading This paper presents the algorithms of the new guideline, gives an overview about the mechanical background and discusses the results for specimens of steel and aluminium alloys. It also shows results comparing the new to the current FKM guideline for a given steel structure.


2017 ◽  
Vol 86 (1) ◽  
pp. 56-58
Author(s):  
Seiichiro TSUTSUMI ◽  
Fincato RICCARDO ◽  
Mitsuru OHATA ◽  
Tomokazu SANO

Sign in / Sign up

Export Citation Format

Share Document