A novel hybrid aircraft propulsion based on the DEA compressor—Part A: Design

Author(s):  
Babak Aryana

This two-part article introduces a novel hybrid propulsion system based on the DEA compressor. The system encompasses a Pulse Detonation TurboDEA as the master engine that supplies several full-electric ancillary thrusters called DEAThruster. The system, called the propulsion set, can be categorized as a distributed propulsion system based on the design mission and number of ancillary thrusters. Part A of this article explains the design process comprising intake, compressor, detonation process, diffuser, axial turbine, and the exit nozzle. The main target is to design a high-performance low emission propulsion system capable of serving in a wide range of altitudes and flight Mach numbers that covers altitudes up to 20,000 m and flight Mach number up to the hypersonic edge. Designing the propulsion set, the design point is considered at the static condition in the sea level. Design results show the propulsion set can satisfy all requirements necessary for its mission.

Author(s):  
Babak Aryana

This two-parts article introduces a novel hybrid propulsion system based on the DEA compressor. The system encompasses a Pulse Detonation TurboDEA as the master engine that supplies several full-electric ancillary thrusters called DEAThruster. The system, called the propulsion set, can be categorized as a distributed propulsion system based on the design mission and number of ancillary thrusters. Part B of this article explains the performance sizing of the propulsion set designed in part A. Evaluating the performance of the propulsion, computer programs are written for all major components of the both master engine and ancillary thruster. The intake, compressor, detonation process, diffusers, axial turbine, and exit nozzle are modeled under certain flight conditions, and their performances are revealed and analyzed. The flight conditions are considered from the static condition at the sea level up to flight Mach number 5 at an altitude of 20,000 m. The performance of the propulsion set is also compared with some aircraft propulsions modeled by similar studies in all important aspects.


Author(s):  
Roberto Capata ◽  
Luca Marino ◽  
Enrico Sciubba

In recent years, a renewed interest in the development of unmanned air vehicles (UAVs) led to a wide range of interesting applications in the fields of reconnaissance and surveillance. In these types of mission, the noise produced by propeller driven UAVs is a major drawback, which can be partially solved by installing an electric motor to drive the propeller. The evolution of high performance brushless motors makes electric propulsion particularly appealing, at least for small and medium size UAVs. All electric propulsion systems developed to date are though penalized by the limited range/endurance that can be provided by a reasonably sized battery pack. In this paper we propose a hybrid propulsion system based on a recently developed, high efficiency microturbine which can be used to power an electric generator, thus providing a significant range/mission time extension. The UMTG is undergoing operational testing in our Laboratory, to identify its most suitable configuration and to improve its performance: a new compact regenerative combustion chamber was developed and several tests were performed to reduce its weight and size so as to increase the vehicle payload. In a high range/endurance mission the ultramicro turbine drives the electrical motor that powers the propeller only during the cruise phase (the so-called “transfer to target”), while in the final approach, in which a quiet flight attitude is mandatory, a (smaller) battery pack drives the motor directly and the UMTG is turned off. The mission requirements considered for the preliminary design of the UAV consist of a long endurance (> 12 hours) step, with a cruise speed of 33.3 m/s and a dash speed of 45 m/s at an altitude of 5000 meters. The maximum take-off weight is 500 N, with a payload of 80 N. Under the above assumptions, a flying wing configuration for the UAV was defined, with a length of 1.6 meters and a span of 2.5 meters. A system of elevons assures the pitch and roll motion while a double vertical tail, in which a pusher propeller is lodged, guarantees the yaw stability and control.


2014 ◽  
Vol 02 (01) ◽  
pp. 16-35 ◽  
Author(s):  
R. Capata ◽  
L. Marino ◽  
E. Sciubba

In recent years, renewed interest in the development of unmanned aerial vehicles (UAVs) has led to a wide range of interesting applications in reconnaissance and surveillance. In these missions, the noise produced by propeller-driven UAVs is a major drawback, which can be partially solved by installing an electric motor to drive the propeller. While the evolution of high performance brushless motors makes electric propulsion particularly appealing, at least for small and medium UAVs, all electric propulsion systems developed to date are penalized by the limited range and endurance that can be provided by a reasonably sized battery pack. In this paper we propose a hybrid propulsion system based on a recently developed ultramicro gas–turbine (UMGT), which can be used to power an electric generator, providing a significant range and (or) mission time extension. The UMGT is undergoing operational testing in our laboratory, to identify the most suitable configuration and to improve performance: a new compact regenerative combustion chamber was developed and several tests are being carried out to reduce its weight and size so as to increase, all other things being equal, the vehicle payload. This paper aims to propose a high endurance UAV, by a preliminary configuration selection and aerodynamic study of its performance.


2000 ◽  
Author(s):  
Emiliano Cioffarelli ◽  
Enrico Sciubba

Abstract A hybrid propulsion system of new conception for medium-size passenger cars is described and its preliminary design developed. The system consists of a turbogas set operating at fixed rpm, and a battery-operated electric motor that constitutes the actual “propulsor”. The battery pack is charged by the thermal engine which works in an electronically controlled on/off mode. Though the idea is not entirely new (there are some concept cars with similar characteristics), the present study has important new aspects, in that it bases the sizing of the thermal engine on the foreseen “worst case” vehicle mission (derived from available data on mileage and consumption derived from road tests and standard EEC driving mission cycles) that they can in fact be accomplished, and then proceeds to develop a control strategy that enables the vehicle to perform at its near–peak efficiency over a wide range of possible missions. To increase the driveability of the car, a variable-inlet vane system is provided for the gas turbine. After developing the mission concept, and showing via a thorough set of energy balances (integrated over various mission profiles), a preliminary sizing of the turbogas set is performed. The results of this first part of the development program show that the concept is indeed feasible, and that it has important advantages over both more traditional (Hybrid Vehicles powered by an Internal Combustion Engine) and novel (All-Electric Vehicle) propulsion systems.


Author(s):  
Ahmed E. E. Khalil ◽  
Ashwani K. Gupta

Distributed Combustion provides significant performance improvement of gas turbine combustors including uniform thermal field in the entire combustion chamber (improved pattern factor), ultra low emission of NOx and CO, low noise, enhanced stability and higher efficiency. Distributed combustion with swirl have been investigated to determine the beneficial aspects of such flows on clean and efficient combustion under simulated gas turbine combustion conditions with close focus on NOx emission. Near Zero emissions of NO and CO have been demonstrated using methane under distributed combustion conditions with heat release intensities commensurable to gas turbine applications. In this paper, distributed combustion is further investigated using both gaseous and liquid fuels with emphasis on pollutants emission and combustor performance with each fuel. Performance evaluation with the different fuels is established to outline the flexibility of the combustor in handling a wide range of fuels with different calorific values and phases with focus on ultra-low pollutants emission. Results obtained on pollutants emission and OH* chemiluminescence for the specific fuels examined at various equivalence ratios are presented. Near distributed combustion conditions with less than 5 PPM of NO emission were demonstrated under novel premixed conditions for the various fuels tested thus outlining the combustor ability to handle different fuels with high performance. Further reduction of NOx can be made with true distributed combustion condition.


2000 ◽  
Author(s):  
Isaya Matsuo ◽  
Shinsuke Nakazawa ◽  
Hiromasa Maeda ◽  
Eiji Inada

2020 ◽  
Vol 182 (3) ◽  
pp. 23-27
Author(s):  
Filip Polak

Article presents comparison of the energetic balance of vehicle powertrain – pure electric vehicle and vehicle equipped with electric hybrid power transmission. Society is more and more often persuaded to buy electric cars as an environmentally friendly solution because they have opinion of ecological vehicles. Electrification in military applications is also widely considered, especially in case of small to medium UGV’s such as wide range of robotic systems introduced to the milatary operations. The article presents the problems of comparing the efficiency and others parameters such as the range of a two presented powertrains. The research was carried out on an small unmanned land platform equipped with a hybrid propulsion system supplied as standard with Diesel power generator and electrically only powered. Energy used for charging of the battery, from tank-to-wheel, was calculated. This also enables to calculate total efficiency of electric and hybrid power transmission. By calculating different capacity of battery and power of generator, it is possible to determine the vehicle range.


Author(s):  
Roberto Capata ◽  
Luca Marino ◽  
Enrico Sciubba

In recent years, a renewed interest in the development of unmanned air vehicles (UAV’s) led to a wide range of interesting applications in the fields of reconnaissance and surveillance. In these types of mission, the noise produced by propeller driven UAVs is a major drawback, which can be partially solved by installing an electric motor to drive the propeller. The evolution of high performance brushless motors makes electric propulsion particularly appealing, at least for small and medium size UAVs. All electric propulsion systems developed to date are though characterized by the limited range/endurance that can be obtained with a reasonably sized battery pack. In this paper we propose a hybrid propulsion system based on recently developed, high efficiency micro-turbines which can be used to power an electric generator. The UMGT is under evaluation in our department, to achieve the optimal configuration and performances. For this scope a new compact regenerative combustion chamber has been developed and several tests has been carried out, with the aim to reduce weight and dimension and increase vehicle payload. In a high range/endurance mission the ultra-micro-turbine can provide the energy required for the cruise phase (the so-called “transfer to target”), while in the final approach, in which a quiet flight attitude is a demanding item, the battery pack drives the motor. The mission requirements adopted in the preliminary aircraft design presented here consist mainly of a long endurance (> 12 hours) step, with a cruise speed of 33.3 m/s and a dash speed of 45 m/s at an altitude of 5000 meters. The maximum take-off weight is 500 N, with a payload of 80 N. Under the above assumptions, a flying wing configuration for the UAV was defined, with a length of 1.6 meters and a span of 2.5 meters. A system of elevons assures the pitch and roll motion while a double vertical tail, in which a pusher propeller is lodged, guarantees the yaw stability and control.


Sign in / Sign up

Export Citation Format

Share Document