Velocity-free attitude tracking for rigid spacecraft via bounded control

Author(s):  
Jian Zhang ◽  
Wen-Jie Wu ◽  
Long Liu ◽  
Dai Liu

This article investigates the attitude tracking control problem for a rigid spacecraft without angular velocity feedback, in which external disturbances, parametric uncertainties, and input saturation are considered. Initially, an angular velocity observer is developed incorporated with adaptive technique, which could tackle the unmeasurable angular velocity and system uncertainties simultaneously. By introducing adaptive updating law into the proposed observer, the synchronized uncertainties are handled such that robustness of the observer is enhanced, even in the presence of external disturbances. Further, for solving the input constraints problem, command filter and backstepping method are utilized; thus, a bounded attitude tracking control law is derived. Finally, the attitude tracking performance is evaluated by numerical examples.

2017 ◽  
Vol 9 (7) ◽  
pp. 168781401771040 ◽  
Author(s):  
Anuchit Jitpattanakul ◽  
Chutiphon Pukdeboon

This article studies an output feedback attitude tracking control problem for rigid spacecraft in the presence of parameter uncertainties and external disturbances. First, an anti-unwinding attitude control law is designed using the integral sliding mode control technique to achieve accurate tracking responses and robustness against inertia uncertainties and external disturbances. Next, the derived control law is combined with a suitable tuning law to relax the knowledge about the bounds of uncertainties and disturbances. The stability results are rigorously proved using the Lyapunov stability theory. In addition, a new finite-time sliding mode observer is developed to estimate the first time derivative of attitude. A new adaptive output feedback attitude controller is designed based on the estimated results, and angular velocity measurements are not required in the design process. A Lyapunov-based analysis is provided to demonstrate the uniformly ultimately bounded stability of the observer errors. Numerical simulations are given to illustrate the effectiveness of the proposed control method.


Author(s):  
Reza Nadafi ◽  
Mansour Kabganian

This study investigated associations of attitude tracking control of an underactuated spacecraft with consideration of saturation and perturbations. A nonsingular attitude tracking control was proposed which did not need limiting initial conditions of the quaternions. The controller was analyzed based on Lyapunov criteria and LaSalle’s invariance theorem in the large-angle maneuver. In order to control, the complete kinematic and dynamic model of the underactuated spacecraft was reconstructed. According to simulation results, our controller has excellent robustness against the hard saturation, external disturbances, time-varying inertia uncertainties, and internal disturbances of actuators. As result, we found that the attitude controller was asymptotically stable under the soft saturation and the perturbations so that quaternions and angular velocity converged to the desired path within the 80 s. Also, it was still asymptotic stable under the hard saturation whose level is equal to 0.035 Nm, 3.5% of the soft saturation level. In this case, errors of quaternions and angular velocity were converged to the origin within the 150 s. Finally, the closed-loop system was verified by Adams-MATLAB co-simulation. The maximum verification errors for quaternions were less than 19%, while the maximum verification errors for angular velocity were less than 13.5%.


Author(s):  
Dinesh D Dhadekar ◽  
S E Talole

In this article, position and attitude tracking control of the quadrotor subject to complex nonlinearities, input couplings, aerodynamic uncertainties, and external disturbances coupled with faults in multiple motors is investigated. A robustified nonlinear dynamic inversion (NDI)-based fault-tolerant control (FTC) scheme is proposed for the purpose. The proposed scheme is not only robust against aforementioned nonlinearities, disturbances, and uncertainties but also tolerant to unexpected occurrence of faults in multiple motors. The proposed scheme employs uncertainty and disturbance estimator (UDE) technique to robustify the NDI-based controller by providing estimate of the lumped disturbance, thereby enabling rejection of the same. In addition, the UDE also plays the role of fault detection and identification module. The effectiveness and benefits of the proposed design are confirmed through 6-DOF simulations and experimentation on a 3-DOF Hover platform.


Sign in / Sign up

Export Citation Format

Share Document