scholarly journals Adaptive output feedback integral sliding mode attitude tracking control of spacecraft without unwinding

2017 ◽  
Vol 9 (7) ◽  
pp. 168781401771040 ◽  
Author(s):  
Anuchit Jitpattanakul ◽  
Chutiphon Pukdeboon

This article studies an output feedback attitude tracking control problem for rigid spacecraft in the presence of parameter uncertainties and external disturbances. First, an anti-unwinding attitude control law is designed using the integral sliding mode control technique to achieve accurate tracking responses and robustness against inertia uncertainties and external disturbances. Next, the derived control law is combined with a suitable tuning law to relax the knowledge about the bounds of uncertainties and disturbances. The stability results are rigorously proved using the Lyapunov stability theory. In addition, a new finite-time sliding mode observer is developed to estimate the first time derivative of attitude. A new adaptive output feedback attitude controller is designed based on the estimated results, and angular velocity measurements are not required in the design process. A Lyapunov-based analysis is provided to demonstrate the uniformly ultimately bounded stability of the observer errors. Numerical simulations are given to illustrate the effectiveness of the proposed control method.

Author(s):  
Cheng Huang ◽  
Yan Wang ◽  
Xing-lin Chen

This paper studies the problem of attitude tracking control for spacecraft rendezvous and docking based on a physical ground simulation system. Two finite-time controllers based on quaternion are proposed by using a novel fast nonsingular terminal sliding mode surface associated with the adaptive control, the novel fast nonsingular terminal sliding mode surface not only contains the advantages of the fast nonsingular terminal sliding mode surface, but also can eliminate unwinding caused by the quaternion. The first controller, which is continuous and chattering-free, can compensate unknown constant external disturbances, while the second controller can both compensate parametric uncertainties and varying external disturbances with unknown bounds without chattering. Lyapunov theoretical analysis and simulation results show that the two controllers can make the closed-loop system errors converge to zero in finite time and guarantee the finite-time stability of the system.


Author(s):  
Bing Huang ◽  
Ai-jun Li ◽  
Yong Guo ◽  
Chang-qing Wang ◽  
Jin-hua Guo

This paper investigates the finite-time attitude tracking control problem for spacecraft in the presence of external disturbances and actuator faults. Two anti-unwinding attitude tracking control schemes have been proposed based on the rotation matrix and sliding mode control technology. Utilizing a fast terminal sliding mode surface, the first controller can fulfill the finite-time attitude tracking control task with disturbance rejection ability. The second controller can improve the system reliability when the actuator fault occurs. Rigorous mathematical analysis and proof concludes that the proposed controllers can make a spacecraft track the desired attitude command in finite time. Numerical simulation results are presented to demonstrate the effectiveness of the proposed controllers.


2021 ◽  
Author(s):  
Jie Wang ◽  
YuShang Hu ◽  
Wenqiang Ji

Abstract This paper investigates the problem of the finite-time attitude tracking control for rigid spacecrafts with external disturbances and inertia uncertainties. Firstly, a finite-time approach is designed to achieve attitude tracking control of the rigid spacecraft in absence of disturbances and inertia uncertainties and the time of convergence can be chosen in advance. Then, the integral sliding mode combined with barrier function-based adaptive laws is proposed to reject the disturbances and inertia uncertainties, and at the same time, a barrier function-based adaptive method can also ensure the solutions of the rigid spacecraft system belonging to a stipulated vicinity of the intended variables starting from the initial moment and the uncertainties' upper bound is not overestimated. Finally, numerical simulation is provided to illustrate the efficiency of the proposed control protocol.


Author(s):  
Jian Zhang ◽  
Wen-Jie Wu ◽  
Long Liu ◽  
Dai Liu

This article investigates the attitude tracking control problem for a rigid spacecraft without angular velocity feedback, in which external disturbances, parametric uncertainties, and input saturation are considered. Initially, an angular velocity observer is developed incorporated with adaptive technique, which could tackle the unmeasurable angular velocity and system uncertainties simultaneously. By introducing adaptive updating law into the proposed observer, the synchronized uncertainties are handled such that robustness of the observer is enhanced, even in the presence of external disturbances. Further, for solving the input constraints problem, command filter and backstepping method are utilized; thus, a bounded attitude tracking control law is derived. Finally, the attitude tracking performance is evaluated by numerical examples.


2016 ◽  
Vol 40 (1) ◽  
pp. 155-162 ◽  
Author(s):  
Yueying Wang ◽  
Pingfang Zhou ◽  
Ji-An Chen ◽  
Dengping Duan

The problem of station-keeping attitude tracking control for an autonomous airship with system uncertainties and external disturbances is investigated. Adaptive laws are applied to estimate the upper bounds of uncertainties and disturbances, and a nonlinear finite time control scheme is proposed by combing input/output feedback linearization with integral sliding mode technique. Different from the existing works on attitude control of airship, the developed controller can guarantee the yaw, pitch and roll angle trajectories track the desired attitude in finite time in spite of uncertain system uncertainties and external disturbances. Simulation results are provided to illustrate the attitude tracking performance.


Author(s):  
Dinesh D Dhadekar ◽  
S E Talole

In this article, position and attitude tracking control of the quadrotor subject to complex nonlinearities, input couplings, aerodynamic uncertainties, and external disturbances coupled with faults in multiple motors is investigated. A robustified nonlinear dynamic inversion (NDI)-based fault-tolerant control (FTC) scheme is proposed for the purpose. The proposed scheme is not only robust against aforementioned nonlinearities, disturbances, and uncertainties but also tolerant to unexpected occurrence of faults in multiple motors. The proposed scheme employs uncertainty and disturbance estimator (UDE) technique to robustify the NDI-based controller by providing estimate of the lumped disturbance, thereby enabling rejection of the same. In addition, the UDE also plays the role of fault detection and identification module. The effectiveness and benefits of the proposed design are confirmed through 6-DOF simulations and experimentation on a 3-DOF Hover platform.


Author(s):  
Yohan Díaz-Méndez ◽  
Leandro Diniz de Jesus ◽  
Marcelo Santiago de Sousa ◽  
Sebastião Simões Cunha ◽  
Alexandre Brandão Ramos

Sliding mode control (SMC) is a widely used control law for quadrotor regulation and tracking control problems. The purpose of this article is to solve the tracking problem of quadrotors using a relatively novel nonlinear control law based on SMC that makes use of a conditional integrator. It is demonstrated by a motivation example that the proposed control law can improve the transient response and chattering shortcomings of the previous approaches of similar SMC based controllers. The adopted Newton–Euler model of quadrotor dynamics and controller design is treated separately in two subsystems: attitude and position control loops. The stability of the control technique is demonstrated by Lyapunov’s analysis and the effectiveness and performance of the proposed method are compared with a similar integral law, also based on SMC, and validated by tracking control problems using numerical simulations. Simulations were developed in the presence of external disturbances in order to evaluate the controller robustness. The effectiveness of the proposed controller was verified by performance indexes, demonstrating less accumulated tracking errors and control activity and improvement in the transient response and disturbance rejection when compared to a conventional integrator sliding mode controller.


Sign in / Sign up

Export Citation Format

Share Document