Exploring wall shear stress spatiotemporal heterogeneity in coronary arteries combining correlation-based analysis and complex networks with computational hemodynamics

Author(s):  
Karol Calò ◽  
Giuseppe De Nisco ◽  
Diego Gallo ◽  
Claudio Chiastra ◽  
Ayla Hoogendoorn ◽  
...  

Atherosclerosis at the early stage in coronary arteries has been associated with low cycle-average wall shear stress magnitude. However, parallel to the identification of an established active role for low wall shear stress in the onset/progression of the atherosclerotic disease, a weak association between lesions localization and low/oscillatory wall shear stress has been observed. In the attempt to fully identify the wall shear stress phenotype triggering early atherosclerosis in coronary arteries, this exploratory study aims at enriching the characterization of wall shear stress emerging features combining correlation-based analysis and complex networks theory with computational hemodynamics. The final goal is the characterization of the spatiotemporal and topological heterogeneity of wall shear stress waveforms along the cardiac cycle. In detail, here time-histories of wall shear stress magnitude and wall shear stress projection along the main flow direction and orthogonal to it (a measure of wall shear stress multidirectionality) are analyzed in a representative dataset of 10 left anterior descending pig coronary artery computational hemodynamics models. Among the main findings, we report that the proposed analysis quantitatively demonstrates that the model-specific inlet flow-rate shapes wall shear stress time-histories. Moreover, it emerges that a combined effect of low wall shear stress magnitude and of the shape of the wall shear stress–based descriptors time-histories could trigger atherosclerosis at its earliest stage. The findings of this work suggest for new experiments to provide a clearer determination of the wall shear stress phenotype which is at the basis of the so-called arterial hemodynamic risk hypothesis in coronary arteries.

2019 ◽  
Vol 40 (Supplement_1) ◽  
Author(s):  
E M J Hartman ◽  
A M Kok ◽  
A Hoogendoorn ◽  
F J H Gijsen ◽  
A F W Steen ◽  
...  

Abstract Introduction Local wall shear stress (WSS) metrics, high local lipid levels (as detected by near-infrared spectroscopy (NIRS)), as well as systemic lipid levels, have been individually associated with atherosclerotic disease progression. However, a possible synergistic effect remains to be elucidated. This study is the first study to combine WSS metrics with NIRS-detected local lipid content to investigate a potential synergistic effect on plaque progression in human coronary arteries. Methods The IMPACT study is a prospective, single centre study investigating the relation between atherosclerotic plaque progression and WSS in human coronary arteries. Patients with ACS treated with PCI were included. At baseline and after 1-year follow-up, patients underwent near-infrared spectroscopy intravascular ultrasound (NIRS-IVUS) imaging and intravascular doppler flow measurements of at least one non-culprit coronary artery. After one month, a CT angiography was made. CT derived centreline combined with IVUS lumen contours resulted in a 3D reconstruction of the vessel. The following WSS metrics were computed using computational fluid dynamics applying the vessel specific invasive flow measurements: time-average wall shear stress (TAWSS), relative residence time (RRT), cross-flow index, oscillatory shear index and transverse wall shear stress. Low TAWSS is known as pro atherogenic, in contrast to all the other shear stress metrics, at which a high magnitude is pro-atherogenic. The arteries were divided into 1.5mm/45° sectors. Based on NIRS-IVUS, wall thickness change over time was determined and NIRS positive sectors detected. Furthermore, per vessel the shear stress was divided into tertiles (low, intermediate, high). To investigate the synergistic effect of local lipids on shear stress related plaque growth, wall thickness change over time was related to the different shear stress metrics comparing the NIRS-positive with the NIRS-negative sectors. Results 15 non-culprit coronary arteries from the first 14 patients were analyzed (age 62±10 years old and 92.9% male). A total of 2219 sectors were studied (5.2%, N=130, NIRS-positive) for wall thickness changes. After studying all five shear stress metrics, we found for TAWSS and RRT that presence of lipids, as detected by NIRS, amplified the effect of shear stress on plaque progression (see figure). Sectors presenting with lipid-rich plaque, compared to NIRS-negative sectors, showed more progression when they were exposed to low TAWSS (p=0.07) or high RRT (p=0.012) and more regression in sectors exposed to high TAWSS (p=0.10) or low RRT (p=0.06). Delta wall thickness vs shear stress Conclusion We presented the first preliminary results of the IMPACT study, showing the synergistic effect of lipid rich plaque and shear stress on plaque progression. Therefore, intravascular lipid-rich plaque (NIRS) assessment has added value to shear stress profiling for the prediction of plaque growth, leading to improved risk stratification. Acknowledgement/Funding ERC starting grant 310457


2016 ◽  
Vol 11 (10) ◽  
pp. 1779-1790 ◽  
Author(s):  
Guillaume Zahnd ◽  
Jelle Schrauwen ◽  
Antonios Karanasos ◽  
Evelyn Regar ◽  
Wiro Niessen ◽  
...  

2015 ◽  
Vol 14 (Suppl 1) ◽  
pp. S2 ◽  
Author(s):  
David S Molony ◽  
Lucas H Timmins ◽  
Olivia Y Hung ◽  
Emad Rasoul-Arzrumly ◽  
Habib Samady ◽  
...  

Circulation ◽  
2015 ◽  
Vol 132 (suppl_3) ◽  
Author(s):  
Anna Starikov ◽  
Guanglei Xiong ◽  
James K Min

Introduction: The ability to detect hemodynamically significant coronary artery disease non-invasively has been a goal that has the potential to improve patient care significantly. New non-invasive approaches using coronary CT angiograms (CCTAs) have been proposed and appear to show some promise. Hypothesis: One such method is the measurement of measuring wall shear stress (WSS), the tangential force of flowing blood against the artery wall, using computational fluid dynamics (CFD). However, in order to deem this technique useful in clinical practice, the normal values must first be defined. These values have been minimally reported and are limited to the left coronary tree. Methods: We ran a CFD simulation of WSS on 3-D reconstructions of the coronary arteries derived from the CCTAs of 35 patients with either no disease or non-obstructive (< 50%) stenosis from the DeFACTO trial, a multi-center study. The resulting model was segmented according to the Society of Cardiovascular CT guidelines, separating the proximal and distal parts of each artery as well as the major side branches. The segments were composed of WSS values at hundreds of points along the vessel wall. The median value was taken as a representative of each segment. Results: The average values were calculated and varied significantly from one another, especially the proximal and distal parts of the same artery, as showing in Figure 1. Conclusions: These results establish the first known WSS distribution within all of the coronary arteries and serve as a foundation for defining a cut-off for abnormal values. Importantly, they also illuminate the variability of WSS that occurs even throughout a single artery and suggests that perhaps multiple abnormal cutoffs need to be established to evaluate WSS based on the location of the stenosis.


Author(s):  
Navid Freidoonimehr ◽  
Rey Chin ◽  
Anthony C. Zander ◽  
Maziar Arjomandi

Abstract Temporal variations of the coronary arteries during a cardiac cycle are defined as the superposition of the changes in the position, curvature, and torsion of the coronary artery axis markers and the variations in the lumen cross-sectional shape due to the distensible wall motion induced by the pulse pressure and contraction of the myocardium in a cardiac cycle. This review discusses whether the modelling the temporal variations of the coronary arteries is needed for the investigation of the hemodynamics specifically in time critical applications such as a clinical environment. The numerical modellings in the literature which model or disregard the temporal variations of the coronary arteries on the hemodynamic parameters are discussed. The results in the literature show that neglecting the effects of temporal geometric variations is expected to result in about 5\% deviation of the time-averaged pressure drop and wall shear stress values and also about 20\% deviation of the temporal variations of hemodynamic parameters, such as time-dependent wall shear stress and oscillatory shear index. This review study can be considered as a guide for the future studies to outline the conditions in which temporal variations of the coronary arteries can be neglected, while providing a reliable estimation of hemodynamic parameters.


Author(s):  
Leonie Rouleau ◽  
Monica Farcas ◽  
Jean-Claude Tardif ◽  
Rosaire Mongrain ◽  
Richard Leask

Endothelial cell (EC) dysfunction has been linked to atherosclerosis through their response to hemodynamic forces. Flow in stenotic vessels creates complex spatial gradients in wall shear stress. In vitro studies examining the effect of shear stress on endothelial cells have used unrealistic and simplified models, which cannot reproduce physiological conditions. The objective of this study was to expose endothelial cells to the complex shear shear pattern created by an asymmetric stenosis. Endothelial cells were grown and exposed for different times to physiological steady flow in straight dynamic controls and in idealized asymmetric stenosis models. Cells subjected to 1D flow aligned with flow direction and had a spindle-like shape when compared to static controls. Endothelial cell morphology was noticeable different in the regions with a spatial gradient in wall shear stress, being more randomly oriented and of cobblestone shape. This occurred despite the presence of an increased magnitude in shear stress. No other study to date has described this morphology in the presence of a positive wall shear stress gradient or gradient of significant shear magnitude. This technique provides a more realistic model to study endothelial cell response to spatial and temporal shear stress gradients that are present in vivo and is an important advancement towards a better understanding of the mechanisms involved in coronary artery disease.


Author(s):  
Francisco A. Pino-Romainville ◽  
Jagannath R. Nanduri ◽  
Ismail B. Celik ◽  
Ansaar T. Rai

Many recent studies suggest that hemodynamic factors such as wall shear stress (WSS) and pressure contribute to the genesis and growth of intracranial aneurysms. Recently there have been a number of computational hemodynamics studies that calculate the values of wall shear stress in arterial and aneurismal flows. However there is a lack of comprehensive error analysis in many of the computational hemodynamics studies. This is perhaps the reason for speculative and ambiguous conclusions drawn by various studies as to the nature of wall shear stress responsible for aneurysm growth. In the current study, geometry involving an actual aneurysm is built from angiogram images. Another geometry consisting of the primary artery where the aneurysm formed is also built by removing the aneurysm volume. The two geometries are meshed using three different grid densities. Second order schemes are used to simulate the pulsatile hemodynamics through each of the geometries. Various representative planes along the geometries are considered and the major flow variables and WSS are plotted as a function of grid densities. The procedure for estimation of discretization error, suggested by ASME Journal of Fluids Engineering, is applied at various representative locations along the aneurysm and arterial geometry. The results suggest high dependence of calculated WSS on local grid density. The contours of WSS in the arterial geometry suggest that high WSS does not necessarily occur at the location where the aneurysm originated. Possible remedies are suggested so that this uncertainty could be eliminated from future studies.


2013 ◽  
Vol 42 ◽  
pp. 55-69 ◽  
Author(s):  
Grégoire Fourrié ◽  
Laurent Keirsbulck ◽  
Larbi Labraga

Sign in / Sign up

Export Citation Format

Share Document