scholarly journals Analysis of hip joint cross-shear under variable activities using a novel virtual joint model within Visual3D

Author(s):  
Robin B Layton ◽  
Neil Messenger ◽  
Todd D Stewart

Cross-shear forces occur between bearing surfaces at the hip and have been identified as a key contributor to prosthesis wear. Understanding the variation in relative motion paths between both individuals and activities, is a possible explanation for increased revision rates for younger patients and could assist in improved pre-clinical testing regimes. Additionally, there is little information for the pre-clinical testing of cartilage substitution therapies for younger more active individuals. The calculation of motion paths has previously relied on computational modelling software which can be complex and time-consuming. The aim of this study was to determine whether the motion paths calculations could be integrated into gait analysis software to improve batch processing, reduce analysis time and ultimately improve the efficiency of the analysis of cross-shear variation for a broader range of activities. A novel Virtual Joint model was developed within Visual3D for calculating motion paths. This model was compared to previous computational methods and found to provide a competitive solution for cross shear analysis (accuracy <0.01 mm error between methods). The virtual hip model was subsequently applied to 13 common activities to investigate local aspect ratio’s, velocities and accelerations. Surprisingly walking produced the harshest cross shear motion paths in subjects. Within walking, of additional interest was that the localised change in acceleration for subjects was six times greater compared to the same point on an equivalent smoothed simulator cycle. The Virtual hip developed in Visual 3D provides a time saving technique for visualising and processing large data sets directly from motion files. The authors postulate that rather than focussing on a generalised smoothed cross-shear model that pre-clinical testing of more delicate structures should consider localised changes in acceleration as these may be more important in the assessment of cartilage substitutes sensitive to shear.

2019 ◽  
Vol 18 ◽  
pp. 160940691988069 ◽  
Author(s):  
Rebecca L. Brower ◽  
Tamara Bertrand Jones ◽  
La’Tara Osborne-Lampkin ◽  
Shouping Hu ◽  
Toby J. Park-Gaghan

Big qualitative data (Big Qual), or research involving large qualitative data sets, has introduced many newly evolving conventions that have begun to change the fundamental nature of some qualitative research. In this methodological essay, we first distinguish big data from big qual. We define big qual as data sets containing either primary or secondary qualitative data from at least 100 participants analyzed by teams of researchers, often funded by a government agency or private foundation, conducted either as a stand-alone project or in conjunction with a large quantitative study. We then present a broad debate about the extent to which big qual may be transforming some forms of qualitative inquiry. We present three questions, which examine the extent to which large qualitative data sets offer both constraints and opportunities for innovation related to funded research, sampling strategies, team-based analysis, and computer-assisted qualitative data analysis software (CAQDAS). The debate is framed by four related trends to which we attribute the rise of big qual: the rise of big quantitative data, the growing legitimacy of qualitative and mixed methods work in the research community, technological advances in CAQDAS, and the willingness of government and private foundations to fund large qualitative projects.


Author(s):  
John A. Hunt

Spectrum-imaging is a useful technique for comparing different processing methods on very large data sets which are identical for each method. This paper is concerned with comparing methods of electron energy-loss spectroscopy (EELS) quantitative analysis on the Al-Li system. The spectrum-image analyzed here was obtained from an Al-10at%Li foil aged to produce δ' precipitates that can span the foil thickness. Two 1024 channel EELS spectra offset in energy by 1 eV were recorded and stored at each pixel in the 80x80 spectrum-image (25 Mbytes). An energy range of 39-89eV (20 channels/eV) are represented. During processing the spectra are either subtracted to create an artifact corrected difference spectrum, or the energy offset is numerically removed and the spectra are added to create a normal spectrum. The spectrum-images are processed into 2D floating-point images using methods and software described in [1].


Author(s):  
Thomas W. Shattuck ◽  
James R. Anderson ◽  
Neil W. Tindale ◽  
Peter R. Buseck

Individual particle analysis involves the study of tens of thousands of particles using automated scanning electron microscopy and elemental analysis by energy-dispersive, x-ray emission spectroscopy (EDS). EDS produces large data sets that must be analyzed using multi-variate statistical techniques. A complete study uses cluster analysis, discriminant analysis, and factor or principal components analysis (PCA). The three techniques are used in the study of particles sampled during the FeLine cruise to the mid-Pacific ocean in the summer of 1990. The mid-Pacific aerosol provides information on long range particle transport, iron deposition, sea salt ageing, and halogen chemistry.Aerosol particle data sets suffer from a number of difficulties for pattern recognition using cluster analysis. There is a great disparity in the number of observations per cluster and the range of the variables in each cluster. The variables are not normally distributed, they are subject to considerable experimental error, and many values are zero, because of finite detection limits. Many of the clusters show considerable overlap, because of natural variability, agglomeration, and chemical reactivity.


Author(s):  
Mykhajlo Klymash ◽  
Olena Hordiichuk — Bublivska ◽  
Ihor Tchaikovskyi ◽  
Oksana Urikova

In this article investigated the features of processing large arrays of information for distributed systems. A method of singular data decomposition is used to reduce the amount of data processed, eliminating redundancy. Dependencies of com­putational efficiency on distributed systems were obtained using the MPI messa­ging protocol and MapReduce node interaction software model. Were analyzed the effici­ency of the application of each technology for the processing of different sizes of data: Non — distributed systems are inefficient for large volumes of information due to low computing performance. It is proposed to use distributed systems that use the method of singular data decomposition, which will reduce the amount of information processed. The study of systems using the MPI protocol and MapReduce model obtained the dependence of the duration calculations time on the number of processes, which testify to the expediency of using distributed computing when processing large data sets. It is also found that distributed systems using MapReduce model work much more efficiently than MPI, especially with large amounts of data. MPI makes it possible to perform calculations more efficiently for small amounts of information. When increased the data sets, advisable to use the Map Reduce model.


2018 ◽  
Vol 2018 (6) ◽  
pp. 38-39
Author(s):  
Austa Parker ◽  
Yan Qu ◽  
David Hokanson ◽  
Jeff Soller ◽  
Eric Dickenson ◽  
...  

Computers ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 47
Author(s):  
Fariha Iffath ◽  
A. S. M. Kayes ◽  
Md. Tahsin Rahman ◽  
Jannatul Ferdows ◽  
Mohammad Shamsul Arefin ◽  
...  

A programming contest generally involves the host presenting a set of logical and mathematical problems to the contestants. The contestants are required to write computer programs that are capable of solving these problems. An online judge system is used to automate the judging procedure of the programs that are submitted by the users. Online judges are systems designed for the reliable evaluation of the source codes submitted by the users. Traditional online judging platforms are not ideally suitable for programming labs, as they do not support partial scoring and efficient detection of plagiarized codes. When considering this fact, in this paper, we present an online judging framework that is capable of automatic scoring of codes by detecting plagiarized contents and the level of accuracy of codes efficiently. Our system performs the detection of plagiarism by detecting fingerprints of programs and using the fingerprints to compare them instead of using the whole file. We used winnowing to select fingerprints among k-gram hash values of a source code, which was generated by the Rabin–Karp Algorithm. The proposed system is compared with the existing online judging platforms to show the superiority in terms of time efficiency, correctness, and feature availability. In addition, we evaluated our system by using large data sets and comparing the run time with MOSS, which is the widely used plagiarism detection technique.


2021 ◽  
Author(s):  
Věra Kůrková ◽  
Marcello Sanguineti
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document