Experimental investigation of designed solar parabolic concentrator based desalination system for textile industry wastewater treatment

2021 ◽  
pp. 0958305X2110273
Author(s):  
Atin K Pathak ◽  
VV Tyagi ◽  
Sanjeev Anand ◽  
Richa Kothari

The escalation in demand for textile products increased the use of fresh water and treatment of wastewater; which escalates the search for suitable and energy-efficient technology for wastewater treatment. Solar assisted technology ( i.e. solar desalination) for the textile industry wastewater treatment is proved to be an affordable technology. The only drawback of solar desalination is its low productivity which is the major hindrance in the global acceptance of the system. In the present study, an ingenious improvement in form of a parabolic concentrator-based solar desalination system (PCB-SDS) is designed to overcome low productivity, and the simultaneous use of source textile industry wastewater for its treatment makes this study more realistic. The performance of the designed system was examined for three different brine depths i.e. 20%, 40%, and 60% for two different processing step i.e. Dyeing and Degumming. System performance was evaluated in terms of energetic, exergetic, pollutant removal, and economic analysis. The maximum output of the system was found to be around 7440 and 8330 mL/day on clear sunny days with textile dyeing wastewater (TDyWW) and textile degumming wastewater (TDgWW) at 60% depth respectively. Daily average energy and exergy efficiency of system varies in the range 39.8–51.9 and 3.6–4.8% respectively. The degumming wastewater shows 85% COD removal, whereas, around 90% of TDS and hardness removal was also recorded. The dyeing processed wastewater showed 80% COD removal efficiency, ≅90% TDS, and hardness removal. The cost per liter of distillate output produced from designed PCB-SDS was found to be 0.014 $/L.

2018 ◽  
Vol 69 (05) ◽  
pp. 412-418 ◽  
Author(s):  
MOGA IOANA CORINA ◽  
ARDELEAN IOAN ◽  
PETRESCU GABRIEL ◽  
CRĂCIUN NICOLAE ◽  
POPA RADU

Textile industry processes produce some of the most heavily polluted wastewater worldwide. Wastewater from textile industry is also highly variable (it varies with time and among factories) and contains wide diversity of pollutants. This makes the treatment of textile industry effluents, complex, site-specific and expensive. Numerous combinations of wastewater treatment technologies are currently applied in the textile industry, yet methods that work for one emitter are often unsuitable, insufficient, not necessary or unsustainable to another. As textile industry evolves, its water treatment research also has to keep pace with increasing demands. The broader aim of the textile industry wastewater treatment is to maximize the efficiency of pollutant removal, while releasing effluents that society considers as being environmentally acceptable or safe. In the last ten years great strides have been made in the ability to lower the biological oxygen demand (BOD) and ammonium (NH4+) in wastewater. These advances elicit the question: can intensifying the usage of such technologies in the textile industry also increase its efficiency? The research team analysed water treatment by aerobic biomineralization via microbial biofilms immobilized on solid surfaces and hosted in Moving Bed Bio-Reactors (MBBRs). These biofilms are selected for carbon oxidation and ammonia oxidation. The authors compare the potential of active sludge biotreatment with the performance of MBBRs. The results are used to evaluate the potential of MBBRs as a cost-reducing solution in textile wastewater treatment plants. Our analysis supports that upgrading such stations to more heavily usage of MBBR biotechnology would increase their sustainability and environmental friendliness. The authors also discuss research directions and milestones for expanding the effects of MBBRs on the textile industry wastewater treatment.


Energies ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 263 ◽  
Author(s):  
Monika Kloch ◽  
Renata Toczyłowska-Mamińska

Microbial fuel cell (MFC) has the potential to become a promising sustainable technology of wastewater treatment. Usually, the investigations on MFCs are aimed at maximized power production in the system. In this article, we focused on the optimization of wood industry wastewater treatment in MFC, in combination with municipal wastewater as a source of microorganisms. We investigated the influence of different external resistance (2000 Ω, 1000 Ω, 500 Ω, and 100 Ω) on power density and wastewater treatment efficiency (chemical oxygen demand (COD) removal) in 1-month MFC operation time. We found that the highest COD removal was for MFCs under R = 1000 Ω after 22 days of MFC operation, while the highest current density was obtained for the lowest applied resistance. The results imply that wastewater treatment parameters such as resistance and time of MFC operation should be a subject of optimization for each specific type of wastewater used, in order to maximize either wastewater treatment efficiency or power production in MFC. Thus, optimization of power production and COD removal efficiency in MFCs need to be run separately as different resistances are required for maximizing these two parameters. When COD removal efficiency is a subject of optimization, there is no universal value of external resistance, but it should be set to the specific wastewater characteristics.


1990 ◽  
Vol 22 (12) ◽  
pp. 287-301 ◽  
Author(s):  
Jair Rosa Cláudio ◽  
Pedro Alem Sobrinho

At the São Paulo Metropolitan Area, the sludge resulting from treatment of electroplating industry wastewater is inadequately disposed of, generating environmental hazards. A possible way to solve this problem is the cementation of this sludge before disposal. From July,1986 to March, 1987, the authors developed laboratory tests on cementation of electroplating wastewater treatment sludges. Performed at the laboratories of Escola Politécnica of the University of São Paulo and of CETESB, tests were conducted with three types of cement produced in Brazil - CPC - Portland Cement, POZ-pozzolanic cement and CAF - blast furnace cement. The tests had the following steps:characterization of electroplating industry wastewater treatment sludge and study of the sludge - cement mixtures;preparation of sludge - cement mixtures with water/cement ratios of 0.3, 0.5 and 0.7;measurements of mixture consistency with Casagrande soil mechanics equipment;determination of leaching quality and resistance to compression of solidified specimen at the ages of 7 days, 28 days and 90 days;analytical determination of the sludge cement mixture;test for solubility in water at the age of 90 days;analytical determination of cyanide and heavy metals in the cure water of specimen. Results showed that solidification with cement is an efficient technology for the fixation of toxic metal ions such as Cd, Hg and Pb and other metals such as Cr, Ni, Cu or Zn present in large concentrations in electroplating wastewater treatment sludges. With the only exception of Al+++ the other metallicions determined in the leachate showed concentrations below drinking water standards. As to mechanical resistance after 90 days, the sludge - cement mixtures presented a performance similar to that of structural concrete.


2013 ◽  
Vol 8 (2) ◽  
pp. 95-102

In this work, pre-ozonation for degradation, decolourization and detoxicifying of a raw textile wastewater collected in a textile fininshing industry, Istanbul (Turkey) is investigated. Differing from the previous studies, a low ozone (O3) flow rate (9.6 mg min-1) was applied at original pH of the wastewater. The effect of pH varying from 5 to 11 and the H2O2 dose of 600 mg l-1 on ozone oxidation were also investigated. The acute toxicity of raw and treated wastewater samples were measured using 24 h newborn Daphnia magna. COD, colour in APHA Pt-Co (platin-cobalt) unit and absorbance at 450, 500 and 550 nm wave lengths which were coinciding the peak absorbance band of the raw wastewater were analyzed in treated samples. A 60% of acute toxicity, 92% of and 50% of total COD removal were obtained at original pH of wastewater by applying ozone for 30 min. Absorbed ozone dose was 105 mg l-1 with a ozone transfer rate of 3.5 mg l-1. Varying pH did not improve toxicity removal, however, soluble COD removal increased at 3 and 6% respectively for 9.0 and 11.0 values while colour removal increased (7%) only at 11.0 pH. Adding 600 mg l-1 of H2O2 increased COD removal at 10% after 20 min oxidation. Colour removal increase was more significant in O3/H2O2 oxidation in parallel with the increase in absorbance kinetics. All over results obtained this study are expected to contribute to control the textile industry wastewater pollution and to protect aquatic environment.


Sign in / Sign up

Export Citation Format

Share Document