scholarly journals The potential of biofilms from moving bed bioreactors to increase the efficiency of textile industry wastewater treatment

2018 ◽  
Vol 69 (05) ◽  
pp. 412-418 ◽  
Author(s):  
MOGA IOANA CORINA ◽  
ARDELEAN IOAN ◽  
PETRESCU GABRIEL ◽  
CRĂCIUN NICOLAE ◽  
POPA RADU

Textile industry processes produce some of the most heavily polluted wastewater worldwide. Wastewater from textile industry is also highly variable (it varies with time and among factories) and contains wide diversity of pollutants. This makes the treatment of textile industry effluents, complex, site-specific and expensive. Numerous combinations of wastewater treatment technologies are currently applied in the textile industry, yet methods that work for one emitter are often unsuitable, insufficient, not necessary or unsustainable to another. As textile industry evolves, its water treatment research also has to keep pace with increasing demands. The broader aim of the textile industry wastewater treatment is to maximize the efficiency of pollutant removal, while releasing effluents that society considers as being environmentally acceptable or safe. In the last ten years great strides have been made in the ability to lower the biological oxygen demand (BOD) and ammonium (NH4+) in wastewater. These advances elicit the question: can intensifying the usage of such technologies in the textile industry also increase its efficiency? The research team analysed water treatment by aerobic biomineralization via microbial biofilms immobilized on solid surfaces and hosted in Moving Bed Bio-Reactors (MBBRs). These biofilms are selected for carbon oxidation and ammonia oxidation. The authors compare the potential of active sludge biotreatment with the performance of MBBRs. The results are used to evaluate the potential of MBBRs as a cost-reducing solution in textile wastewater treatment plants. Our analysis supports that upgrading such stations to more heavily usage of MBBR biotechnology would increase their sustainability and environmental friendliness. The authors also discuss research directions and milestones for expanding the effects of MBBRs on the textile industry wastewater treatment.

2021 ◽  
pp. 0958305X2110273
Author(s):  
Atin K Pathak ◽  
VV Tyagi ◽  
Sanjeev Anand ◽  
Richa Kothari

The escalation in demand for textile products increased the use of fresh water and treatment of wastewater; which escalates the search for suitable and energy-efficient technology for wastewater treatment. Solar assisted technology ( i.e. solar desalination) for the textile industry wastewater treatment is proved to be an affordable technology. The only drawback of solar desalination is its low productivity which is the major hindrance in the global acceptance of the system. In the present study, an ingenious improvement in form of a parabolic concentrator-based solar desalination system (PCB-SDS) is designed to overcome low productivity, and the simultaneous use of source textile industry wastewater for its treatment makes this study more realistic. The performance of the designed system was examined for three different brine depths i.e. 20%, 40%, and 60% for two different processing step i.e. Dyeing and Degumming. System performance was evaluated in terms of energetic, exergetic, pollutant removal, and economic analysis. The maximum output of the system was found to be around 7440 and 8330 mL/day on clear sunny days with textile dyeing wastewater (TDyWW) and textile degumming wastewater (TDgWW) at 60% depth respectively. Daily average energy and exergy efficiency of system varies in the range 39.8–51.9 and 3.6–4.8% respectively. The degumming wastewater shows 85% COD removal, whereas, around 90% of TDS and hardness removal was also recorded. The dyeing processed wastewater showed 80% COD removal efficiency, ≅90% TDS, and hardness removal. The cost per liter of distillate output produced from designed PCB-SDS was found to be 0.014 $/L.


2013 ◽  
Vol 321-324 ◽  
pp. 192-195
Author(s):  
Jing Zhang

Tourmaline is a kind of natural low-cost mineral material. It has a number of unique physical properties and has been a kind of promising environmental material in wastewater treatment. This study was to investigate the aerobic biofilm treatment of coking wastewater with and without tourmaline addition. The results indicated that tourmaline added in moving bed bioreactor (MBBR) process could enhance the removal efficiency of chemical oxygen demand (COD).The organic contaminants could be removed by tourmaline added. The mechanisms of increase of organic contaminants removal may correlate to the existence of tourmaline spontaneous electrode. Micrograph of the excess sludge in the tourmaline-MBBR system indicated that the tourmaline added could be the carrier of the microbe and also affect the biomass and pollutant removal.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Manickam Ramesh Kumar ◽  
Ramalingam Malathy ◽  
Sundararajan Paramasivam ◽  
Ill-Min Chung ◽  
Seung-Hyun Kim ◽  
...  

Purpose The textile industry is one of the largest and most important industrial sectors in India. Because the textile industry consumes large quantities of water and produces highly polluted water discharge, its environmental impact is high. Water is expensive to use, treat and dispose of. Therefore, water conservation and reuse are critical necessity for the textile industry because decreasing water and wastewater treatment and recycling costs can be beneficial. Design/methodology/approach This research neutralized the pH during dyeing industry wastewater treatment. The system should be robust to erroneous sensor measurements. A pH meter was developed and used to monitor the pH of wastewater hourly before and after HCl treatment. Findings HCl was used to neutralize the pH of wastewater from 9 to 7.5. The amount of HCl was optimized depending on the wastewater. Three wastewater treatment methods were used, namely, HCl, wash water and reverse osmosis (RO) treatments. The HCl treatment was the most effective for decreasing the pH; the wash water treatment was the most effective for decreasing the total dissolved solids (TDS), total suspended solids (TSS) total hardness and chemical oxygen demand; and the RO treatment was the most effective for decreasing the biochemical oxygen demand, TDS, TSS, total hardness and Cl− concentration. Originality/value The pH should be monitored during the textile dyeing because the addition of color to textile fabrics is the most effective at neutral pH. This study evaluated several parameters of wastewater, including pH, color, TSS and TDS. The fabricated digital pH meter provided superior results than conventional measuring devices. The goal was to maintain a neutral pH during dyeing and recycle wastewater to improve environmental sustainability. The newly developed digital pH meter was less expensive and more precise than traditional pH meters. Before reusing and recycling, wastewater underwent ultrafiltration and RO treatment.


2016 ◽  
Vol 73 (12) ◽  
pp. 2858-2867 ◽  
Author(s):  
N. Ramdani ◽  
A. Lousdad ◽  
A. Tilmatine ◽  
S. Nemmich

Abstract Current research reveals that the oxidation by ozone is considered as an effective solution and offers irrefutable advantages in wastewater treatment. It is also well known that ozone is used to treat different types of water due to its effectiveness in water purification and for its oxidation potential. This process of ozonation is becoming progressively an alternative technology and is inscribed in a sustainable development perspective in Algeria. In this regards, the present paper investigates the wastewater treatment process by ozone produced by dielectric barrier discharge (DBD) under high potential. Three (DBD) ozone generators of cylindrical form have been used, at a laboratory scale, for treating collected samples from the wastewater treatment plant (WWTP) of the city of Sidi-Bel-Abbes located in the west of Algeria. Our experimental results reveal the efficiency of this type of treatment on the basis of the physicochemical analysis (pH, turbidity, chemical oxygen demand, biological oxygen demand, heavy metals) and microbial analysis downstream of the WWTP, which showed a high rate of elimination of all the parameters.


2021 ◽  
Vol 83 (5) ◽  
pp. 1250-1264
Author(s):  
B. L. Dinesha ◽  
Sharanagouda Hiregoudar ◽  
Udaykumar Nidoni ◽  
K. T. Ramappa ◽  
Anilkumar Dandekar ◽  
...  

Abstract The present investigation was focused to compare chitosan based nano-adsorbents (CZnO and CTiO2) for efficient treatment of dairy industry wastewater using Response Surface Methodology (RSM) and Artificial Neural Network (ANN) models. The nano-adsorbents were synthesized using chemical precipitation method and characterized by using scanning electron microscope with elemental detection sensor (SEM-EDS) and atomic force microscope (AFM). Maximum %RBOD (96.71 and 87.56%) and %RCOD (90.48 and 82.10%) for CZnO and CTiO2 nano-adsorbents were obtained at adsorbent dosage of 1.25 mg/L, initial biological oxygen demand (BOD) and chemical oxygen demand (COD) concentration of 100 and 200 mg/L, pH of 7.0 and 2.00, contact time of 100 and 60 min, respectively. The results obtained for both the nano-adsorbents were subject to RSM and ANN models for determination of goodness of fit in terms of sum of square errors (SSE), root mean square error (RMSE), R2 and Adj. R2, respectively. The well trained ANN model was found superior over RSM in prediction of the treatment effect. Hence, the developed CZnO and CTiO2 nano-adsorbents could be effectively used for dairy industry wastewater treatment.


2001 ◽  
Vol 44 (11-12) ◽  
pp. 331-338 ◽  
Author(s):  
A. Szabó ◽  
A. Osztoics ◽  
F. Szilágyi

Over the last few decades more and more natural wastewater treatment systems have been built in Hungary. The present study is the first step in creating a broad database on the water quality parameters and on the pollutant removal efficiency of these systems. The investigation included 78 plants out of which we analysed 16 systems in detail. Four types of natural methods are evaluated: wetlands, ponds, bio-mechanical combined oxidation (BMKO) systems, and poplar plantations. Pond systems are efficient in ammonium-nitrogen (NH4-N) removal, reducing it with 83% (41-88%). Their chemical oxygen demand (CODCr) removal capacity is only 55% (37-81%). The only BMKO system that could be evaluated performs high CODCr (77%) and total suspended solid (TSS) (89%) removal. Removal of NH4-N and total nitrogen (TN) declines during the years of operation giving an average value of 39% and 49%, respectively. The system is not efficient in phosphorus removal (13%). In wetlands the 71% CODCr (53-96%), and 57% TSS (33-91%) removal provides satisfactory effluent quality most of the time. Wetlands performed low nutrient removal, i.e., 17% (-21-46%) for TN and 26% (-20-92%) for phosphorus. Poplar plantations are very effective in pollutant removal. Even the average removal of each nutrient type is above 75%. Several problems have occurred in the operation of natural treatment systems. However, if carefully planned and constructed, and the required maintenance work is done properly, they can be possible alternatives for wastewater treatment.


1999 ◽  
Vol 40 (1) ◽  
pp. 31-36 ◽  
Author(s):  
K. Orupõld ◽  
K. Hellat ◽  
T. Tenno

The activated sludge short-term respiration measurement is proposed for assessing the properties of activated sludge and biological treatability of wastewaters. Different influents to the wastewater treatment plant were analyzed and compared on the basis of exogenous oxygen uptake rates of activated sludge. The kinetic parameters of biodegradation processes were determined by monitoring the degradation-associated oxygen consumption in tests with different amounts of wastewaters from textile industries and tanneries. The short-term oxygen demands in the tests formed 25-45% of the biochemical oxygen demand of the textile industry wastewater.


2012 ◽  
Vol 65 (11) ◽  
pp. 2079-2083 ◽  
Author(s):  
Jorge G. Ibanez ◽  
Jorge Luis Vazquez-Olavarrieta ◽  
Lydia Hernandez-Rivera ◽  
Martin Adolfo Garcia-Sanchez ◽  
Elizabeth Garcia-Pintor

Electrocoagulation (EC) is a wastewater treatment process in which aqueous pollutants can be removed by adsorption, entrapment, precipitation or coalescence during a coagulation step produced by electrochemically generated metallic species. When using Fe as the sacrificial electrode, Fe2+ and Fe3+ ions are formed. As Fe3+ species are paramagnetic, this property can in principle be used to facilitate their removal through the application of a magnetic field. In the present work we present a proof-of-concept for a combined electrochemical-magnetic method for pollutant removal. For this approach, the amounts of Fe2+ and Fe3+ produced in an EC cell at various voltages were measured by spectroscopic methods to confirm that Fe3+ species predominate (up to 84%). The effectiveness of the presence of a magnetic field in the precipitation of coagulants from a suspension was confirmed by monitoring the turbidity change versus time with and without exposure to a magnetic field, up to a 30% improvement.


Sign in / Sign up

Export Citation Format

Share Document