Disturbance observer–based dynamic surface control design for a hypersonic vehicle with input constraints and uncertainty

Author(s):  
Fang Wang ◽  
Qin Zou ◽  
Changchun Hua ◽  
Qun Zong
Author(s):  
Xiangyu Wang ◽  
Ling Han ◽  
Jiyu Liu

In this paper, the attitude and height tracking control problem is studied for unmanned helicopters with disturbances. To solve the problem, a composite control scheme is proposed based on the combination of dynamic surface control and disturbance observer-based control techniques. The control design includes two parts. In the first part, some nonlinear disturbance observers are designed to accurately estimate the helicopter’s disturbances in different channels. In the second part, based on the disturbance estimates and dynamic surface control technique, a composite dynamic surface tracking controller is designed. Under the proposed composite controller, the attitude and height tracking errors are uniformly ultimately bounded and they can be regulated to be very small by selecting proper controller parameters. For one thing, the proposed control scheme avoids “explosion of terms”, which generally exists in conventional backstepping control and provides a simpler control design. For another thing, without sacrificing the nominal control performances, the anti-disturbance ability of the closed-loop helicopter system is enhanced by using disturbance observers and feedforward compensations. Numerical simulations demonstrate the effectiveness and advantages of the proposed composite tracking controller.


IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 163163-163175 ◽  
Author(s):  
Guoqiang Zhu ◽  
Linlin Nie ◽  
Miaolei Zhou ◽  
Xiuyu Zhang ◽  
Lingfang Sun ◽  
...  

Author(s):  
Yunfei Wang ◽  
Jiyun Zhao ◽  
Haigang Ding ◽  
He Zhang

The electro-hydraulic system is widely used in industrial production due to its high power-to-weight ratio, but the heavy-duty characteristics make the electro-hydraulic system subject to large disturbance force even if the actuator moves slightly, especially in mobile machines and multi-actuators system. Therefore, a position and velocity constraints method based on barrier Lyapunov function is proposed to guarantee the tracking error limited in a strict range to avoid the large disturbance force. Besides, the external disturbance, parameters uncertainty and modeling errors in the asymmetric cylinder electro-hydraulic systems affect the accuracy of position tracking seriously. So a high-gain disturbance observer is designed to estimate the lumped disturbance of the system, which can avoid amplification of the noise during the states measurement. In addition, dynamic surface control based on backstepping method is adopted to avoid the derivative explosion phenomenon when calculating the derivatives of virtual control inputs, which reduces the computational complexity of the system significantly. To verify the effectiveness of the proposed controller, proportional-integral controller and adaptive controller are designed to be compared with the high-gain disturbance observer–based dynamic surface controller with the backstepping method, and the comparison results show that the proposed controller has a more precise trajectory tracking performance.


Sign in / Sign up

Export Citation Format

Share Document