Impacts of mid- to late-Holocene land use on residual hill geomorphology: A remote sensing and archaeological evaluation of human-related soil erosion in central Karnataka, South India

The Holocene ◽  
2013 ◽  
Vol 24 (1) ◽  
pp. 3-14 ◽  
Author(s):  
Andrew M Bauer
2020 ◽  
Vol 9 (1) ◽  
Author(s):  
Veera Narayana Balabathina ◽  
R. P. Raju ◽  
Wuletaw Mulualem ◽  
Gedefaw Tadele

Abstract Background Soil erosion is one of the major environmental challenges and has a significant impact on potential land productivity and food security in many highland regions of Ethiopia. Quantifying and identifying the spatial patterns of soil erosion is important for management. The present study aims to estimate soil erosion by water in the Northern catchment of Lake Tana basin in the NW highlands of Ethiopia. The estimations are based on available data through the application of the Universal Soil Loss Equation integrated with Geographic Information System and remote sensing technologies. The study further explored the effects of land use and land cover, topography, soil erodibility, and drainage density on soil erosion rate in the catchment. Results The total estimated soil loss in the catchment was 1,705,370 tons per year and the mean erosion rate was 37.89 t ha−1 year−1, with a standard deviation of 59.2 t ha−1 year−1. The average annual soil erosion rare for the sub-catchments Derma, Megech, Gumara, Garno, and Gabi Kura were estimated at 46.8, 40.9, 30.9, 30.0, and 29.7 t ha−1 year−1, respectively. Based on estimated erosion rates in the catchment, the grid cells were divided into five different erosion severity classes: very low, low, moderate, high and extreme. The soil erosion severity map showed about 58.9% of the area was in very low erosion potential (0–1 t ha−1 year−1) that contributes only 1.1% of the total soil loss, while 12.4% of the areas (36,617 ha) were in high and extreme erosion potential with erosion rates of 10 t ha−1 year−1 or more that contributed about 82.1% of the total soil loss in the catchment which should be a high priority. Areas with high to extreme erosion severity classes were mostly found in Megech, Gumero and Garno sub-catchments. Results of Multiple linear regression analysis showed a relationship between soil erosion rate (A) and USLE factors that soil erosion rate was most sensitive to the topographic factor (LS) followed by the support practice (P), soil erodibility (K), crop management (C) and rainfall erosivity factor (R). Barenland showed the most severe erosion, followed by croplands and plantation forests in the catchment. Conclusions Use of the erosion severity classes coupled with various individual factors can help to understand the primary processes affecting erosion and spatial patterns in the catchment. This could be used for the site-specific implementation of effective soil conservation practices and land use plans targeted in erosion-prone locations to control soil erosion.


Author(s):  
Omar El Aroussi

In Morocco, the spectacular expansion of erosive processes shows increasingly alarming aspects. Due to the considerable costs of detailed ground surveys for studying this phenomenon, remote sensing is an appropriate alternative for analyzing and evaluating the risks of the expansion of soil degradation. According to an FAO study (2001), Erosion threatens 13 million ha of cropland and rangeland in northern Morocco and induces an estimated average water storage capacity loss of 50 million m3 each year through dam silting. The lost water volume could potentially be used to irrigate 5000 to 6000 ha / year. This study analyses soil erosion on the Oued El Malleh catchment, a 34 km2 catchment located in the north of Fez (Morocco). This contribution aims at mapping the spatio-temporal evolution of land use and modelling the erosion and sedimentation processes using the well known RUSLE model. Land use changes were assessed using Landsat-5 TM and Landsat-7 ETM+ images, from the 1987-2011 periods which were validated by field studies. The images were first georeferenced and projected into the Moroccan coordinate system (Merchich North) then processed to evaluate soil loss through a GIS package (Idrisi Andes Software). These static assessments of soil loss were then used in a deposition/sedimentation algorithm to model soil loss propagation to the downstream. The soil loss averages determined by the model vary between 1.09 t/ha/yr as a minimum value for the reforested lands and 169.4 t/ha/yr as a maximum value for the uncultivated lands (badlands). The latter generally correspond to Regosols or low protected soils located on steep slopes. In comparison with RUSLE, the sedimentation model yields lower values of soil losses; only 97.3 t/h/year for the uncultivated lands, and -0.34 t/ha/year in the reforested land, indicating an on-going sedimentation process. By taking into account the temporal variability of erosion and deposition jointly lower values of soil erosion are calculated by the RUSLE model. However, despite this decline, land degradation problems are still important due to the combination of land use and local lithology. The results of this study were used to indentify areas where interventions are needed to limit land degradation processes.


2011 ◽  
Vol 25 (2) ◽  
pp. 152
Author(s):  
Arina Miardini ◽  
Beny Harjadi

The purpose of this study was to determine the potential erosion qualitatively by using SES by using Remote Sensing and Geographic Information Systems in Kedung Ombo’s catchment area so it can be determined which areas of priority should be conserved. The method used is qualitatively analyses through SES method (Soil Erosion Status).) Which is calculated based on five parameters are: slope direction (aspect), slope (slope gradient), the density of the river (drainage density), soil type (Soil types), and land use (landuse/landcover). The result shows that DTW Kedung Ombo has three classes of erosion, which is very low, low and medium. Amounted to 41179.08 ha or 71.31% of the total DTW Kedung Ombo erosion potential is still relatively mild, 13956.01 ha (24.17%), erosion potential is very low and 2608.95 ha (4:52%) were classified as potential erosion.


2018 ◽  
Vol 7 (3.10) ◽  
pp. 115
Author(s):  
T Subramani ◽  
J Gopi

Today the water shortage is one of the highlighted trouble persist in the global which causes several troubles in surroundings. Based on this in our attention we proposed to do research within the natural tank's development which performs the essential position in the garage of water and supply to all human wishes. To study the tank settlements and its utility we use GIS device for mapping and factors affecting. To develop the records on land use/land cover inside the shape of maps and statistical records is very crucial for spatial making plans, control, and utilization of land. Land use change can also influence many natural phenomena and ecological procedures, inclusive of runoff, soil erosion and sedimentation and soil situations. The goals of this examine are to locate land use modifications and different affecting parameter in Salem district purpose of water scarcity.  


CATENA ◽  
2003 ◽  
Vol 51 (3-4) ◽  
pp. 241-254 ◽  
Author(s):  
Anne Schmitt ◽  
Markus Dotterweich ◽  
Gabriele Schmidtchen ◽  
Hans-Rudolf Bork

2009 ◽  
Vol 23 (1) ◽  
pp. 86
Author(s):  
Beny Harjadi

Soil erosion is crucial problem in India where more than 70% of land in degraded. This study is to establish conservation priorities of the sub watersheds across the entire terrain, and suggest suitable conservation measures. Soil conservation practices are not only from erosion data both qualitative SES (Soil Erosion Status) model and quantitative MMF (Morgan, Morgan and Finney) model erosion, but we have to consider LCC (Land Capability Classification) and LULC (Land Use Land Cover). Study demonstrated the use of RS (Remote Sensing) and GIS (Geographic Information System) in soil erosion risk assessment by deriving soil and vegetation parameters in the erosion models. Sub-watersheds were prioritized based on average soil loss and the area falls under various erosion risk classes for conservation planning. The annual rate of soil loss based on MMF model was classified into five soil erosion risk classes for soil conservation measures. From 11 sub watersheds, for the first priority of the watershed is catchment with the small area and the steep slope. Recommendation for steep areas (classes VI, VII, and VIII) land use allocation should be made to maintain forest functions.


Sign in / Sign up

Export Citation Format

Share Document