Identification of differential gene expression related to epirubicin-induced cardiomyopathy in breast cancer patients

2019 ◽  
Vol 39 (4) ◽  
pp. 393-401 ◽  
Author(s):  
J Peng ◽  
Z Wang ◽  
Y Li ◽  
D Lv ◽  
X Zhao ◽  
...  

Background: Epirubicin is a potent chemotherapeutic agent for the treatment of breast cancer. However, it may lead to cardiotoxicity and cardiomyopathy, and no reliable biomarker was available for the early prediction of epirubicin-induced cardiomyopathy. Methods: Global gene expression changes of peripheral blood cells were studied using high-throughput RNA sequencing in three pair-matched breast cancer patients (patients who developed symptomatic cardiomyopathy paired with patients who did not) before and after the full session of epirubicin-based chemotherapy. Functional analysis was conducted using gene ontology and pathway enrichment analysis. Results: We identified 13 significantly differentially expressed genes between patients who developed symptomatic epirubicin-induced cardiomyopathy and their paired control who did not. Among them, the upregulated Bcl-associated X protein was related to “apoptosis,” while the downregulated 5′-aminolevulinate synthase 2 (ALAS2) was related to both “glycine, serine, and threonine metabolism” and “porphyrin and chlorophyll metabolism” in pathway enrichment analysis. Conclusions: ALAS2 and the metabolic pathways which were involved may play an important role in the development of epirubicin-induced cardiomyopathy. ALAS2 may be useful as an early biomarker for epirubicin-induced cardiotoxicity detection.

2013 ◽  
Vol 40 (12) ◽  
pp. 1256
Author(s):  
XiaoDong JIA ◽  
XiuJie CHEN ◽  
Xin WU ◽  
JianKai XU ◽  
FuJian TAN ◽  
...  

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Xu Yang ◽  
Geng-Xi Cai ◽  
Bo-Wei Han ◽  
Zhi-Wei Guo ◽  
Ying-Song Wu ◽  
...  

AbstractGene expression signatures have been used to predict the outcome of chemotherapy for breast cancer. The nucleosome footprint of cell-free DNA (cfDNA) carries gene expression information of the original tissues and thus may be used to predict the response to chemotherapy. Here we carried out the nucleosome positioning on cfDNA from 85 breast cancer patients and 85 healthy individuals and two cancer cell lines T-47D and MDA-MB-231 using low-coverage whole-genome sequencing (LCWGS) method. The patients showed distinct nucleosome footprints at Transcription Start Sites (TSSs) compared with normal donors. In order to identify the footprints of cfDNA corresponding with the responses to neoadjuvant chemotherapy in patients, we mapped on nucleosome positions on cfDNA of patients with different responses: responders (pretreatment, n = 28; post-1 cycle, post-3/4 cycles, and post-8 cycles of treatment, n = 12) and nonresponders (pretreatment, n = 10; post-1 cycle, post-3/4 cycles, and post-8 cycles of treatment, n = 10). The coverage depth near TSSs in plasma cfDNA differed significantly between responders and nonresponders at pretreatment, and also after neoadjuvant chemotherapy treatment cycles. We identified 232 TSSs with differential footprints at pretreatment and 321 after treatment and found enrichment in Gene Ontology terms such as cell growth inhibition, tumor suppressor, necrotic cell death, acute inflammatory response, T cell receptor signaling pathway, and positive regulation of vascular endothelial growth factor production. These results suggest that cfDNA nucleosome footprints may be used to predict the efficacy of neoadjuvant chemotherapy for breast cancer patients and thus may provide help in decision making for individual patients.


2012 ◽  
Vol 19 (13) ◽  
pp. 4003-4011 ◽  
Author(s):  
Juliette Christie ◽  
Gwendolyn P. Quinn ◽  
Teri Malo ◽  
Ji-Hyun Lee ◽  
Xiuhua Zhao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document