Nrf2 mediates the neuroprotective effect of isoflurane preconditioning in cortical neuron injury induced by oxygen-glucose deprivation

2021 ◽  
pp. 096032712198941
Author(s):  
X-S Liu ◽  
X-L Bai ◽  
Z-X Wang ◽  
S-Y Xu ◽  
Y Ma ◽  
...  

Objective: To investigate how nuclear factor-E2-related factor 2 (Nrf2) involved in the protective effect of isoflurane (Iso) preconditioning in oxygen glucose deprivation (OGD)-induced cortical neuron injury. Methods: Primary mouse cortical neurons were divided into Control, ML385 (an Nrf2 inhibitor), Iso, Iso + ML385, OGD, ML385 + OGD, Iso + OGD, and Iso + ML385 + OGD groups. Lactate dehydrogenase activity (LDH) release and oxidative stress indexes were quantified. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was used to detect cell viability, Annexin V-FITC/propidium iodide (PI) staining to measure cell apoptosis, dichloro-dihydro-fluorescein diacetate (DCFH-DA) method to test reactive oxygen species (ROS), and quantitative reverse-transcription polymerase chain reaction (qRT-PCR) and Western blotting to evaluate genes and protein expression. Results: Iso preconditioning reduced LDH release and inhibited cell cytotoxicity in OGD-induced cortical neurons, which was abolished by ML385. Iso preconditioning increased the Nrf2 nuclear translocation in cortical neurons. Meanwhile, Iso decreased the OGD-induced apoptosis with the down-regulations of Bax and Caspase-3 and the up-regulation of Bcl-2, which was reversed by ML385. OGD enhanced the level of ROS and malondialdehyde (MDA) in cortical neurons, but reduced the activities of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px), which were aggravated in ML385 + OGD group and mitigated in Iso + OGD group. No observable difference was found between OGD group and Iso + ML385 + OGD group regarding apoptosis-related proteins and oxidative stress-related indexes. Conclusion: Iso preconditioning up-regulated Nrf2 level to play its protective role in OGD-induced mouse cortical neuron injury.

2009 ◽  
Vol 296 (1) ◽  
pp. C97-C105 ◽  
Author(s):  
Ferenc Domoki ◽  
Béla Kis ◽  
Tamás Gáspár ◽  
James A. Snipes ◽  
John S. Parks ◽  
...  

We tested whether rosuvastatin (RST) protected against oxygen-glucose deprivation (OGD)-induced cell death in primary rat cortical neuronal cultures. OGD reduced neuronal viability (%naive controls, mean ± SE, n = 24–96, P < 0.05) to 44 ± 1%, but 3-day pretreatment with RST (5 μM) increased survival to 82 ± 2% ( P < 0.05). One-day RST treatment was not protective. RST-induced neuroprotection was abolished by mevalonate or geranylgeranyl pyrophosphate (GGPP), but not by cholesterol coapplication. Furthermore, RST-induced decreases in neuronal cholesterol levels were abolished by mevalonate but not by GGPP. Reactive oxygen species (ROS) levels were reduced in RST-preconditioned neurons after OGD, and this effect was also reversed by both mevalonate and GGPP. These data suggested that GGPP, but not cholesterol depletion, were responsible for the induction of neuroprotection. Therefore, we tested whether 3-day treatments with perillic acid, a nonspecific inhibitor of both geranylgeranyl transferase (GGT) GGT 1 and Rab GGT, and the GGT 1-specific inhibitor GGTI-286 would reproduce the effects of RST. Perillic acid, but not GGTI-286, elicited robust neuronal preconditioning against OGD. RST, GGTI-286, and perillic acid all decreased mitochondrial membrane potential and lactate dehydrogenase activity in the cultured neurons, but only RST and perillic acid reduced neuronal ATP and membrane Rab3a protein levels. In conclusion, RST preconditions cultured neurons against OGD via depletion of GGPP, leading to decreased geranylgeranylation of proteins that are probably not isoprenylated by GGT 1. Reduced neuronal ATP levels and ROS production after OGD may be directly involved in the mechanism of neuroprotection.


Sign in / Sign up

Export Citation Format

Share Document