hippocampal neuron
Recently Published Documents


TOTAL DOCUMENTS

367
(FIVE YEARS 98)

H-INDEX

48
(FIVE YEARS 5)

2022 ◽  
Vol 12 (4) ◽  
pp. 867-872
Author(s):  
Qunwei You ◽  
Wenjie Wang ◽  
Taotao Tao ◽  
Tianyu Wang ◽  
Danhong Zhang ◽  
...  

This study intends to explore miR-129’s effect on cell viability of Alzheimer’s disease by regulating the target gene APP. The hippocampal neurons were assigned into model group (MO group); mimetic group (SI group); inhibitor group (IN group) followed by analysis of hippocampal neuronal cell proliferation and activity, APP protein content, miR-129 expression and cell apoptosis by CCK-8 assay, Western blot method, MTT assay, qRT-PCR and flow cytometry. miR-129 expression of hippocampal neurons in IN group was lowest. Compared with IN and MO groups, SI group had significantly increased miR-129 level and reduced number of hippocampal neuron apoptosis (P < 0.05). Compared with IN group, MO group had significantly reduced cell apoptosis (P < 0.05). SI group had highest number of hippocampal neurons proliferation followed by IN group. SI group had highest OD value followed by MO group and IN group. The cell activity of SI group was higher than that of IN group and MO group (both P < 0.05). Compared with SI group, rat neuron activity in MO group was significantly higher than IN group (P < 0.05). The APP protein expression of hippocampal neuron cells in SI group was lowest followed by MO group and IN group (P < 0.05). In conclusion, the low miR-129 expression can inhibit the activity of hippocampal neurons possibly through up-regulation of APP protein content.


Author(s):  
Xiang-Xin Chen ◽  
Tao Tao ◽  
Sen Gao ◽  
Han Wang ◽  
Xiao-Ming Zhou ◽  
...  

2022 ◽  
Vol 12 (1) ◽  
pp. 1-9
Author(s):  
Li Chen ◽  
Tao Tang ◽  
Xin Zheng ◽  
Ying Xiong

To explore effects of dexmedetomidine (Dex) on cognitive function and hippocampal neuronal apoptosis in rats anesthetized with sevoflurane (Sevo), and regulation of brain-derived neurotrophic factor (BDNF) and its downstream signaling. 30 Sprague-Dawley (SD) rats were randomly divided into control group inhaled 29% concentration oxygen), Sevo group (2 L/min oxygen flow +1.5% Sevo), Dex+Sevo group (after injection of 20 μg/kg Dex, treated with 2L/min oxygen flow+1.5% Sevo). Haematoxylin and eosin (HE) staining and Nissl’s staining were adopted to detect morphological and functional changes in hippocampus of rats. Apoptosis was detected by immunofluorescence, BDNF expression was detected by immunohistochemistry. Reverse transcription PCR (RT-PCR) was conducted to detect mRNA expression of key proteins in downstream signaling of BDNF. The results showed that Sevo induced apoptosis of hippocampus neurons, while Dex improved Sevo induced apoptosis. In contrast to the control, the positive expression of BDNF in hippocampus of Sevo group was notably decreased (P < 0.05), and that of Dex+Sevo group was notably higher in contrast to Sevo group (P < 0.05). Signaling pathways of MAPK, PI3K-Akt, and Ras were predicted by String software as the downstream pathways of BDNF. RT-PCR results showed that these 3 signaling pathways were involved in Dex improving Sevo-induced cognitive impairment and hippocampal neuron apoptosis. In conclusion, Dex could improve cognitive dysfunction and hippocampal neuron apoptosis in rats induced by Sevo, and the mechanism was related to upregulation of BDNF expression and activation of pathways of MAPK, PI3K-Akt, and Ras.


Author(s):  
Martina Stazi ◽  
Sandra Lehmann ◽  
M. Sadman Sakib ◽  
Tonatiuh Pena-Centeno ◽  
Luca Büschgens ◽  
...  

AbstractEpidemiological studies indicate that the consumption of caffeine, the most commonly ingested psychoactive substance found in coffee, tea or soft drinks, reduces the risk of developing Alzheimer’s disease (AD). Previous treatment studies with transgenic AD mouse models reported a reduced amyloid plaque load and an amelioration of behavioral deficits. It has been further shown that moderate doses of caffeine have the potential to attenuate the health burden in preclinical mouse models of a variety of brain disorders (reviewed in Cunha in J Neurochem 139:1019–1055, 2016). In the current study, we assessed whether long-term caffeine consumption affected hippocampal neuron loss and associated behavioral deficits in the Tg4-42 mouse model of AD. Treatment over a 4-month period reduced hippocampal neuron loss, rescued learning and memory deficits, and ameliorated impaired neurogenesis. Neuron-specific RNA sequencing analysis in the hippocampus revealed an altered expression profile distinguished by the up-regulation of genes linked to synaptic function and processes, and to neural progenitor proliferation. Treatment of 5xFAD mice, which develop prominent amyloid pathology, with the same paradigm also rescued behavioral deficits but did not affect extracellular amyloid-β (Aβ) levels or amyloid precursor protein (APP) processing. These findings challenge previous assumptions that caffeine is anti-amyloidogenic and indicate that the promotion of neurogenesis might play a role in its beneficial effects.


Author(s):  
Qiang Lu ◽  
Ying Zhang ◽  
Chao Zhao ◽  
Hu Zhang ◽  
Yuepu Pu ◽  
...  

Author(s):  
Chen Xiang-Xin ◽  
Tao Tao ◽  
Gao Sen ◽  
Wang Han ◽  
Zhou Xiao-Ming ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Li-Ling He ◽  
Yun-Cui Wang ◽  
Ya-Ting Ai ◽  
Ling Wang ◽  
Si-Meng Gu ◽  
...  

Qiangji Decoction (QJD), a classic formula, has been widely used to treat brain aging–related neurodegenerative diseases. However, the mechanisms underlying QJD’s improvement in cognitive impairment of neurodegenerative diseases remain unclear. In this study, we employed D-galactose to establish the model of brain aging by long-term D-galactose subcutaneous injection. Next, we investigated QJD’s effect on cognitive function of the model of brain aging and the mechanisms that QJD suppressing neuroinflammation as well as improving neurodegenerative changes and hippocampal neuron apoptosis. The mice of brain aging were treated with three different dosages of QJD (12.48, 24.96, and 49.92 g/kg/d, respectively) for 4 weeks. Morris water maze was used to determine the learning and memory ability of the mice. HE staining and FJB staining were used to detect the neurodegenerative changes. Nissl staining and TUNEL staining were employed to detect the hippocampal neuron apoptosis. The contents of TNF-α, IL-1β, and IL-6 in the hippocampus were detected by using ELISA. Meanwhile, we employed immunofluorescence staining to examine the levels of GFAP and IBA1 in the hippocampus. Besides, the protein expression levels of Bcl-2, Bax, caspase-3, cleaved caspase-3, AMPKα, p-AMPKα-Thr172, SIRT1, IκBα, NF-κB p65, p-IκBα-Ser32, and p-NF-κB p65-Ser536 in the hippocampus of different groups were detected by Western blot (WB). Our findings showed that the QJD-treated groups, especially the M-QJD group, mitigated learning and memory impairments of the model of brain aging as well as the improvement of neurodegenerative changes and hippocampal neuron apoptosis. Moreover, the M-QJD markedly attenuated the neuroinflammation by regulating the AMPK/SIRT1/NF-κB signaling pathway. Taken together, QJD alleviated neurodegenerative changes and hippocampal neuron apoptosis in the model of brain aging via regulating the AMPK/SIRT1/NF-κB signaling pathway.


Sign in / Sign up

Export Citation Format

Share Document