Neuroprotective effect of licochalcone A against oxygen‐glucose deprivation/reperfusion in rat primary cortical neurons by attenuating oxidative stress injury and inflammatory response via the SIRT1/Nrf2 pathway

2017 ◽  
Vol 119 (4) ◽  
pp. 3210-3219 ◽  
Author(s):  
Xiaohong Liu ◽  
Ying Ma ◽  
Xiaodi Wei ◽  
Ting Fan
2021 ◽  
pp. 096032712198941
Author(s):  
X-S Liu ◽  
X-L Bai ◽  
Z-X Wang ◽  
S-Y Xu ◽  
Y Ma ◽  
...  

Objective: To investigate how nuclear factor-E2-related factor 2 (Nrf2) involved in the protective effect of isoflurane (Iso) preconditioning in oxygen glucose deprivation (OGD)-induced cortical neuron injury. Methods: Primary mouse cortical neurons were divided into Control, ML385 (an Nrf2 inhibitor), Iso, Iso + ML385, OGD, ML385 + OGD, Iso + OGD, and Iso + ML385 + OGD groups. Lactate dehydrogenase activity (LDH) release and oxidative stress indexes were quantified. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was used to detect cell viability, Annexin V-FITC/propidium iodide (PI) staining to measure cell apoptosis, dichloro-dihydro-fluorescein diacetate (DCFH-DA) method to test reactive oxygen species (ROS), and quantitative reverse-transcription polymerase chain reaction (qRT-PCR) and Western blotting to evaluate genes and protein expression. Results: Iso preconditioning reduced LDH release and inhibited cell cytotoxicity in OGD-induced cortical neurons, which was abolished by ML385. Iso preconditioning increased the Nrf2 nuclear translocation in cortical neurons. Meanwhile, Iso decreased the OGD-induced apoptosis with the down-regulations of Bax and Caspase-3 and the up-regulation of Bcl-2, which was reversed by ML385. OGD enhanced the level of ROS and malondialdehyde (MDA) in cortical neurons, but reduced the activities of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px), which were aggravated in ML385 + OGD group and mitigated in Iso + OGD group. No observable difference was found between OGD group and Iso + ML385 + OGD group regarding apoptosis-related proteins and oxidative stress-related indexes. Conclusion: Iso preconditioning up-regulated Nrf2 level to play its protective role in OGD-induced mouse cortical neuron injury.


2011 ◽  
Vol 31 (11) ◽  
pp. 2152-2159 ◽  
Author(s):  
Anna Lena Datwyler ◽  
Gisela Lättig-Tünnemann ◽  
Wei Yang ◽  
Wulf Paschen ◽  
Sabrina Lin Lin Lee ◽  
...  

Small ubiquitin-like modifier (SUMO)2/3 but not SUMO1 conjugation is activated after transient cerebral ischemia. To investigate its function, we blocked neuronal SUMO2/3 translation through lentiviral microRNA delivery in primary cortical neurons. Viability was unaffected by SUMO2/3 silencing unless neurons were stressed by transient oxygen–glucose deprivation (OGD). Both 15 and 45 minutes of OGD were tolerated by control microRNA-expressing neurons but damaged >60% of neurons expressing SUMO2/3 microRNA. Damaging OGD (75 minutes) increased neuronal loss to 54% (control microRNA) and to 99% (SUMO2/3 microRNA). This suggests that activation of SUMO2/3 conjugation is an endogenous neuroprotective stress response.


2016 ◽  
Vol 38 (4) ◽  
pp. 1472-1482 ◽  
Author(s):  
Xuelian Yang ◽  
Tetsuya Asakawa ◽  
Sha Han ◽  
Ling Liu ◽  
Wei Li ◽  
...  

Background/Aims: Neuroserpin (NSP) is known for its neuroprotective role in cerebral ischemic animal models and patients. Our laboratory conducted a series of investigations on the neuroprotection of NSP in different cells in the brain. In the present study, we further observe the effects of NSP on neurons and microglia-mediated inflammatory response following oxygen-glucose deprivation (OGD), and explore possible mechanisms related to neuroprotection of OGD in the central nervous system (CNS). Methods: Neurons and microglia from neonatal rats were treated with OGD followed by reoxygenation (OGD/R). To confirm the effects of NSP, the neuronal survival, neuronal apoptosis, and lactate dehydrogenase (LDH) release were measured in cultured neurons. Furthermore, the levels of IL-1β and nitric oxide (NO) release were also detected in cultured microglia. The possible mechanisms for the neuroprotective effect of NSP were explored using Western blot analysis. Results: NSP administration can reverse abnormal variations in neurons and microglia-mediated inflammatory response induced by OGD/R processes. The neuronal survival rate, neuronal apoptosis rate, and LDH release were significantly improved by NSP administration in neurons. Simultaneously, the release of IL-1β and NO were significantly reduced by NSP in microglia. Western blot showed that the expression of ERK, P38, and JNK was upregulated in microglia by the OGD/R treatment, and these effects were significantly inhibited by NSP. Conclusion: These data verified the neuroprotective effects of NSP on neurons and microglia-mediated inflammatory response. Inhibition of the mitogen-activated protein kinase (MAPK) signaling pathways might play a potential role in NSP neuroprotection on microglia-mediated inflammatory response, which needs further verification.


Sign in / Sign up

Export Citation Format

Share Document