Quantile regression models for survival data with missing censoring indicators

2021 ◽  
pp. 096228022199598
Author(s):  
Zhiping Qiu ◽  
Huijuan Ma ◽  
Jianwei Chen ◽  
Gregg E Dinse

The quantile regression model has increasingly become a useful approach for analyzing survival data due to its easy interpretation and flexibility in exploring the dynamic relationship between a time-to-event outcome and the covariates. In this paper, we consider the quantile regression model for survival data with missing censoring indicators. Based on the augmented inverse probability weighting technique, two weighted estimating equations are developed and corresponding easily implemented algorithms are suggested to solve the estimating equations. Asymptotic properties of the resultant estimators and the resampling-based inference procedures are established. Finally, the finite sample performances of the proposed approaches are investigated in simulation studies and a real data application.

2015 ◽  
Vol 32 (3) ◽  
pp. 686-713 ◽  
Author(s):  
Walter Oberhofer ◽  
Harry Haupt

This paper studies the asymptotic properties of the nonlinear quantile regression model under general assumptions on the error process, which is allowed to be heterogeneous and mixing. We derive the consistency and asymptotic normality of regression quantiles under mild assumptions. First-order asymptotic theory is completed by a discussion of consistent covariance estimation.


2018 ◽  
Vol 28 (4) ◽  
pp. 1170-1187
Author(s):  
MinJae Lee ◽  
Mohammad H Rahbar ◽  
Hooshang Talebi

We propose a nonparametric test for interactions when we are concerned with investigation of the simultaneous effects of two or more factors in a median regression model with right censored survival data. Our approach is developed to detect interaction in special situations, when the covariates have a finite number of levels with a limited number of observations in each level, and it allows varying levels of variance and censorship at different levels of the covariates. Through simulation studies, we compare the power of detecting an interaction between the study group variable and a covariate using our proposed procedure with that of the Cox Proportional Hazard (PH) model and censored quantile regression model. We also assess the impact of censoring rate and type on the standard error of the estimators of parameters. Finally, we illustrate application of our proposed method to real life data from Prospective Observational Multicenter Major Trauma Transfusion (PROMMTT) study to test an interaction effect between type of injury and study sites using median time for a trauma patient to receive three units of red blood cells. The results from simulation studies indicate that our procedure performs better than both Cox PH model and censored quantile regression model based on statistical power for detecting the interaction, especially when the number of observations is small. It is also relatively less sensitive to censoring rates or even the presence of conditionally independent censoring that is conditional on the levels of covariates.


2020 ◽  
Vol 36 (4) ◽  
pp. 583-625 ◽  
Author(s):  
Christoph Breunig

There are many environments in econometrics which require nonseparable modeling of a structural disturbance. In a nonseparable model with endogenous regressors, key conditions are validity of instrumental variables and monotonicity of the model in a scalar unobservable variable. Under these conditions the nonseparable model is equivalent to an instrumental quantile regression model. A failure of the key conditions, however, makes instrumental quantile regression potentially inconsistent. This article develops a methodology for testing the hypothesis whether the instrumental quantile regression model is correctly specified. Our test statistic is asymptotically normally distributed under correct specification and consistent against any alternative model. In addition, test statistics to justify the model simplification are established. Finite sample properties are examined in a Monte Carlo study and an empirical illustration is provided.


Biometrika ◽  
2016 ◽  
Vol 103 (1) ◽  
pp. 175-187 ◽  
Author(s):  
Jun Shao ◽  
Lei Wang

Abstract To estimate unknown population parameters based on data having nonignorable missing values with a semiparametric exponential tilting propensity, Kim & Yu (2011) assumed that the tilting parameter is known or can be estimated from external data, in order to avoid the identifiability issue. To remove this serious limitation on the methodology, we use an instrument, i.e., a covariate related to the study variable but unrelated to the missing data propensity, to construct some estimating equations. Because these estimating equations are semiparametric, we profile the nonparametric component using a kernel-type estimator and then estimate the tilting parameter based on the profiled estimating equations and the generalized method of moments. Once the tilting parameter is estimated, so is the propensity, and then other population parameters can be estimated using the inverse propensity weighting approach. Consistency and asymptotic normality of the proposed estimators are established. The finite-sample performance of the estimators is studied through simulation, and a real-data example is also presented.


2018 ◽  
Vol 22 (Suppl. 1) ◽  
pp. 97-107 ◽  
Author(s):  
Bahadır Yuzbasi ◽  
Yasin Asar ◽  
Samil Sik ◽  
Ahmet Demiralp

An important issue is that the respiratory mortality may be a result of air pollution which can be measured by the following variables: temperature, relative humidity, carbon monoxide, sulfur dioxide, nitrogen dioxide, hydrocarbons, ozone, and particulates. The usual way is to fit a model using the ordinary least squares regression, which has some assumptions, also known as Gauss-Markov assumptions, on the error term showing white noise process of the regression model. However, in many applications, especially for this example, these assumptions are not satisfied. Therefore, in this study, a quantile regression approach is used to model the respiratory mortality using the mentioned explanatory variables. Moreover, improved estimation techniques such as preliminary testing and shrinkage strategies are also obtained when the errors are autoregressive. A Monte Carlo simulation experiment, including the quantile penalty estimators such as lasso, ridge, and elastic net, is designed to evaluate the performances of the proposed techniques. Finally, the theoretical risks of the listed estimators are given.


Sign in / Sign up

Export Citation Format

Share Document