scholarly journals Exploration of Constants Independent of Material and Layup in Transverse Matrix Cracking of Cross-ply Laminate

1993 ◽  
Vol 2 (1) ◽  
pp. 096369359300200
Author(s):  
L-Y Xu

Stiffness reduction caused by matrix crack in cross–ply laminates of CFRP, GFRP, KFRP can be predicted well by a shear–lag model assuming a constant of the crack open displacement index. Due to the existence of the saturation crack state (CDS), stiffness reduction has a low boundary, the minimum normalized longitudinal stiffness of the cracked plies is 0.3 instead of 0 used in current lamination theory on the behaviour prediction after FPF.

1999 ◽  
Vol 8 (5) ◽  
pp. 096369359900800 ◽  
Author(s):  
M. Kashtalyan ◽  
C. Soutis

A new approach based on the Equivalent Constraint Model (ECM) [ 1 ] of the damaged lamina is applied to investigate the stiffness degradation in [0m/90n]s laminates due to matrix cracking both in the 90° (transverse cracking) and 0° (splitting) plies. The advantage of the approach is that it avoids cumbersome consideration of a repeated laminate element defined by the intersecting pairs of transverse cracks and splits, intrinsic to the earlier developed models [ 2 – 6 ]. Instead, two coupled problems for ECM laminates are solved. The stress field in the damaged lamina is determined by means of an improved 2-D shear lag analysis, and the reduced stiffness properties are described with the help of Insitu Damage Effective Functions, for which closed form expressions are obtained. Comparison of the new ECM/2-D shear lag model with the earlier developed models shows a reasonable agreement.


1994 ◽  
Vol 365 ◽  
Author(s):  
Chun-Hway Hsueh

ABSTRACTThe shear lag model has been used extensively to analyze the stress transfer in a singe fiberreinforced composite (i.e., a microcomposite). To achieve analytical solutions, various simplifications have been adopted in the stress analysis. Questions regarding the adequacy of those simplifications are discussed in the present study for the following two cases: bonded interfaces and frictional interfaces. Specifically, simplifications regarding (1) Poisson's effect, and (2) the radial dependences of axial stresses in the fiber and the matrix are addressed. For bonded interfaces, the former can be ignored, and the latter can generally be ignored. However, when the volume fraction of the fiber is high, the radial dependence of the axial stress in the fiber should be considered. For frictional interfaces, the latter can be ignored, but the former should be considered; however, it can be considered in an average sense to simplify the analysis. Comparisons among results obtained from analyses with various simplifications are made.


2018 ◽  
Vol 2018 ◽  
pp. 1-9
Author(s):  
Quan Yuan ◽  
Mengjun Wu

An improved shear-lag model is proposed to investigate the mechanism through which the surface effect influences the stress transfer of multilayered structures. The surface effect of the interlayer is characterized in terms of interfacial stress and surface elasticity by using Gurtin–Murdoch elasticity theory. Our calculation result shows that the surface effect influences the efficiency of stress transfer. The surface effect is enhanced with decreasing interlayer thickness and elastic modulus. Nonuniform and large residual surface stress distribution amplifies the influence of the surface effect on stress concentration.


2001 ◽  
Author(s):  
B. Yang ◽  
S. Mall

Abstract The present study develops a cohesive-shear-lag model to analyze the cycling stress-strain behavior of unidirectional fiber-reinforced ceramic matrix composites. The model, as a modification to a classical shear-lag model, takes into account matrix cracking, partial interfacial debonding, and partial breakage of fibers. The statistical nature of partial breakage of fibers is modeled by using a cohesive force law. The validity of the model is demonstrated by investigating stress-strain hysteresis loops of a unidirectional fiber-reinforced ceramic-glass matrix composite, SiC/1723. This example demonstrates the capability of the proposed model to characterize damage and deformation mechanisms of ceramic matrix composites under tension-tension cycling loading. The dominant progressive damage mechanism with cycling in this case is shown to be accumulation of fibers breakage, accompanied by increase in interfacial debonding and smoothening of frictional debonded interface.


AIAA Journal ◽  
2019 ◽  
Vol 57 (5) ◽  
pp. 2123-2133 ◽  
Author(s):  
Santosh Kapuria ◽  
Bhabagrahi Natha Sharma ◽  
A. Arockiarajan

2020 ◽  
Vol 781 ◽  
pp. 139223
Author(s):  
Weiguo Mao ◽  
Xiaoxue Zhu ◽  
Zhouqing Zhang ◽  
Huiyu Huang ◽  
Cuiying Dai ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document