scholarly journals Pooled-Sample Testing as a Herd-Screening Tool for Detection of Bovine Viral Diarrhea Virus Persistently Infected Cattle

2000 ◽  
Vol 12 (3) ◽  
pp. 195-203 ◽  
Author(s):  
Claudia A. Muñoz-Zanzi ◽  
Wesley O. Johnson ◽  
Mark C. Thurmond ◽  
Sharon K. Hietala

The study was conducted to develop methodology for least-cost strategies for using polymerase chain reaction (PCR)/probe testing of pooled blood samples to identify animals in a herd persistently infected with bovine viral diarrhea virus (BVDV). Cost was estimated for 5 protocols using Monte Carlo simulations for herd prevalences of BVDV persistent infection (BVDV-PI) ranging from 0.5% to 3%, assuming a cost for a PCR/probe test of $20. The protocol associated with the least cost per cow involved an initial testing of pools followed by repooling and testing of positive pools. For a herd prevalence of 1%, the least cost per cow was $2.64 (95% prediction interval = $1.72, $3.68), where pool sizes for the initial and repooled testing were 20 and 5 blood samples per pool, respectively. Optimization of the least cost for pooled-sample testing depended on how well a presumed prevalence of BVDV-PI approximated the true prevalence of BVDV infection in the herd. As prevalence increased beyond 3%, the least cost increased, thereby diminishing the competitive benefit of pooled testing. The protocols presented for sample pooling have general application to screening or surveillance using a sensitive diagnostic test to detect very low prevalence diseases or pathogens in flocks or herds.

2020 ◽  
Vol 103 (3) ◽  
pp. 560-571 ◽  
Author(s):  
Hanah M Georges ◽  
Katie J Knapek ◽  
Helle Bielefeldt-Ohmann ◽  
Hana Van Campen ◽  
Thomas R Hansen

Abstract Bovine viral diarrhea virus continues to cost the cattle industry millions of dollars each year despite control measures. The primary reservoirs for bovine viral diarrhea virus are persistently infected animals, which are infected in utero and shed the virus throughout their lifetime. The difficulty in controlling the virus stems from a limited understanding of transplacental transmission and fetal development of immunotolerance. In this study, pregnant bovine viral diarrhea virus naïve heifers were inoculated with bovine viral diarrhea virus on day 75 of gestation and fetal spleens were collected on gestational days 82, 97, 190, and 245. Microarray analysis on splenic RNA from days 82 and 97 revealed an increase in signaling for the innate immune system and antigen presentation to T cells in day 97 persistently infected fetuses compared to controls. Reverse transcription quantitative polymerase chain reaction on select targets validated the microarray revealing a downregulation of type I interferons and lymphocyte markers in day 190 persistently infected fetuses compared to controls. Protein was visualized using western blot and tissue sections were analyzed with hematoxylin and eosin staining and immunohistochemistry. Data collected indicate that fetal immunotolerance to bovine viral diarrhea virus developed between days 97 and 190, with mass attenuation of the immune system on day 190 of gestation. Furthermore, lymphocyte transcripts were initially unchanged then downregulated, suggesting that immunotolerance to the virus stems from a blockage in lymphocyte activation and hence an inability to clear the virus. The identification of lymphocyte derived immunotolerance will aid in the development of preventative and viral control measures to implement before or during pregnancy.


Sign in / Sign up

Export Citation Format

Share Document