Thermo-piezo-elastic analysis of amplified piezoceramic actuators using a refined one-dimensional model

2017 ◽  
Vol 29 (17) ◽  
pp. 3482-3494 ◽  
Author(s):  
Enrico Zappino ◽  
Erasmo Carrera

The thermo-piezo-elastic analysis of amplified piezoceramic actuators is presented in this article. A refined one-dimensional multi-field finite element model, based on the Carrera Unified Formulation, has been developed. Thermal and piezoelectric effects have been included in the structural model and a fully coupled thermo-piezo-elastic analysis has been performed. The finite element model has been assessed by comparing it with results from open literature The model has also been used to perform the analysis of complex amplified piezoceramic actuators. These actuators are able to amplify the displacements produced by piezoceramic material, but they suffer from high deformations when they undergo high thermal loads. An accurate thermal analysis has been performed to evaluate the strain/stress field. The results show the accuracy of the present model and its capabilities in multi-field analyses.

Author(s):  
Michael Rose

Piezoceramic Patches are commonly used as actuator devices in smart structures if the induced forces are sufficient for the application. To model these devices in a structural dynamics simulation, a finite element model can be augmented by active layers. This needs a suitable element meshing, taking care of the actual shapes and positions of the active patches in use. If many different setups have to be evaluated, which is naturally the case for placement strategies for suitable actuator positions, this approach is quite cumbersome. To ease and speed up the augmentation of fixed finite element models with piezoceramic patches, so called modal correction methods have been successfully used in this context. These approximative methods avoid the remeshing and the reassembling of the underlying finite element model by adapting the modal description of the structural model with the mass, stiffness and electrical coupling effects of the applied patches. In this paper different aspects of this modelling approach are discussed especially for a tool chain to optimize patch locations in an ASAC simulation environment.


2010 ◽  
Vol 229 (12) ◽  
pp. 4813-4830 ◽  
Author(s):  
Massimiliano Ferronato ◽  
Nicola Castelletto ◽  
Giuseppe Gambolati

Author(s):  
Erick I. Saavedra Flores ◽  
Senthil Murugan ◽  
Michael I. Friswell ◽  
Eduardo A. de Souza Neto

This paper proposes a fully coupled three-scale finite element model for the mechanical description of an alumina/magnesium alloy/epoxy composite inspired in the mechanics and architecture of wood cellulose fibres. The constitutive response of the composite (the large scale continuum) is described by means of a representative volume element (RVE, corresponding to the intermediate scale) in which the fibre is represented as a periodic alternation of alumina and magnesium alloy fractions. Furthermore, at a lower scale the overall constitutive behavior of the alumina/magnesium alloy fibre is modelled as a single material defined by a large number of RVEs (the smallest material scale) at the Gauss point (intermediate) level. Numerical material tests show that the choice of the volume fraction of alumina based on those volume fractions of crystalline cellulose found in wood cells results in a maximisation of toughness in the present bio-inspired composite.


Sign in / Sign up

Export Citation Format

Share Document