Modelling of Piezoceramic Patches for Actuator Placement Strategies

Author(s):  
Michael Rose

Piezoceramic Patches are commonly used as actuator devices in smart structures if the induced forces are sufficient for the application. To model these devices in a structural dynamics simulation, a finite element model can be augmented by active layers. This needs a suitable element meshing, taking care of the actual shapes and positions of the active patches in use. If many different setups have to be evaluated, which is naturally the case for placement strategies for suitable actuator positions, this approach is quite cumbersome. To ease and speed up the augmentation of fixed finite element models with piezoceramic patches, so called modal correction methods have been successfully used in this context. These approximative methods avoid the remeshing and the reassembling of the underlying finite element model by adapting the modal description of the structural model with the mass, stiffness and electrical coupling effects of the applied patches. In this paper different aspects of this modelling approach are discussed especially for a tool chain to optimize patch locations in an ASAC simulation environment.

Author(s):  
Fengxia Wang

This work concerns the implementation of nonlinear modal reduction to flexible multi-body dynamics. Linear elastic theory will lead to instability issues with rotating beamlike structures, due to the neglecting of the membrane-bending coupling on the beam cross-section. During the past decade, considerable efforts have been focused on the derivation of geometric nonlinear formulation based on nodal coordinates. In this work, in order to improve the convergence characteristic and also to reduce the computation time in flexible multi-body dynamics, which is extremely important for complicated large systems, a standard modal reduction procedure based on matrix operation is developed with essential geometric stiffening nonlinearities retained in the equation of motion. The example used in this work is a rotating Euler-Bernoulli beam, two nonlinear reduced models were established based on modal coordinates, the first reduced model created from theoretical bending and axial mode shapes by Galerkin method; the second reduced model is derived by the standard matrix operator from a full finite element model. Transient simulation results of lower degrees of freedom from above two reduced models are compared with those obtained from full nonlinear finite element model.


2017 ◽  
Vol 29 (17) ◽  
pp. 3482-3494 ◽  
Author(s):  
Enrico Zappino ◽  
Erasmo Carrera

The thermo-piezo-elastic analysis of amplified piezoceramic actuators is presented in this article. A refined one-dimensional multi-field finite element model, based on the Carrera Unified Formulation, has been developed. Thermal and piezoelectric effects have been included in the structural model and a fully coupled thermo-piezo-elastic analysis has been performed. The finite element model has been assessed by comparing it with results from open literature The model has also been used to perform the analysis of complex amplified piezoceramic actuators. These actuators are able to amplify the displacements produced by piezoceramic material, but they suffer from high deformations when they undergo high thermal loads. An accurate thermal analysis has been performed to evaluate the strain/stress field. The results show the accuracy of the present model and its capabilities in multi-field analyses.


2021 ◽  
Vol 15 (58) ◽  
pp. 114-127
Author(s):  
Jutao Wang ◽  
Zhenzhong Liu ◽  
Liju Xue

Modal frequencies are often used in structural model updating based on the finite element model, and metamodel technique is often applied to the corresponding optimization process. In this work, the Kriging model is used as the metamodel. Firstly, the influence of different correlation functions of Kriging model is inspected, and then the approximate capability of Kriging model is investigated via inspecting the approximate accuracy of nonlinear functions. Secondly, a model updating procedure is proposed based on the Kriging model, and the samples for constructing Kriging model are generated via the method of Optimal Latin Hypercube. Finally, a typical frame structure is taken as a case study and demonstrates the feasibility and efficiency of the proposed approach. The results show the Kriging model can match the target functions very well, and the finite element model can achieve accurate frequencies and can reliably predict the frequencies after model updating.


2018 ◽  
Vol 29 (18) ◽  
pp. 3562-3571 ◽  
Author(s):  
Vijay Venkatesh ◽  
Robert Northcutt ◽  
Christian Heinemann ◽  
Vishnu Baba Sundaresan

The incorporation of a shear-force (SF) feedback in scanning electrochemical microscopy (SECM) hardware has enabled topographically resolved electrochemical imaging of electroactive substrates. Despite the versatility of SECM-SF imaging, structural response of the ultra-microelectrode (UME) to various excitation inputs is poorly understood and predictive mathematical models for characterizing dynamic behavior, particularly at high operating frequencies (>100 kHz), are absent. In this article, we present a finite element model to characterize SF behavior by modeling the UME as a rigid cantilever with two distributed piezoelectric wafers (dither and receiver) and demonstrate the model’s ability to predict experimentally observed SF behavior. The obtained SF response under different dither-to-receiver distances for various UME geometries and loading conditions provides insight to the optimum placement of piezoelectric wafers on the UME for achieving a high SF amplitude at SF-sensitive frequencies. In addition, the variations in SF response under different dither-to-receiver orientations indicate the existence of a system transfer function that is dependent on the operating modes of the receiver. The agreement between simulated and experimental results suggests that the finite element model along with the experimental methodology can be extended to automated SF imaging using SECM hardware.


Author(s):  
Bruna Nabuco ◽  
Tobias Friis ◽  
Marius Tarpø ◽  
Sandro Amador ◽  
Evangelos I. Katsanos ◽  
...  

This paper aims to demonstrate how to estimate strains of fixed structures considering cases with nonlinearities based on parameters determined from one linear case. Both simulated and experimental data have been evaluated. A finite element model was used to obtain the simulated responses. Accelerations and strains were measured along the application of random loading to a fixed structural model for the experimental data. Operational Modal Analysis has been considered in the time domain in order to identify the modal properties. Nonlinearities are included as friction is imposed on the models.


Author(s):  
Haitao Luo ◽  
Peng Wang ◽  
Tingke Wu ◽  
Haonan Wang

The dynamic characteristics of aerospace products play a decisive role in environmental adaptability of products, because aerospace products are subjected to vibration environment during launching process. This paper describes the design of a space truss and the load structure, in order to get the dynamic characteristics, finite element modal analysis and modal test is done on the structural model, through correlation analysis to determine the degree of conformity of the finite element model with the experimental model. It is determined that the finite element mode of truss and load structure is similar to the test mode, the finite element model is acceptable; The dynamic simulation of the structure is carried out by the qualified finite element model, and the dynamic simulation results are verified by the vibration test; The method for obtaining the dynamic characteristics of aerospace products and the way of dynamic simulation for launching process is of great reference value for the design of aerospace products.


2000 ◽  
Vol 28 (4) ◽  
pp. 210-232 ◽  
Author(s):  
F. Mancosu ◽  
R. Sangalli ◽  
F. Cheli ◽  
G. Ciarlariello ◽  
F. Braghin

Abstract A new 3D mathematical-physical tire model is presented. This model considers not only the handling behavior of the tire but also its comfort characteristics, i.e., the dynamic properties in the lateral and the vertical planes. This model can be divided into two parts, the structural model and the contact area model. The structural parameters are identified by comparison with frequency responses of a 3D finite element model of the tire, whereas the contact parameters are directly calculated with a finite element model of the tread pattern. The 3D physical model allows predicting both steady state and transient behavior of the tire without the need of any experimental tests on the tire. The steady state analysis allows obtaining the friction circle diagram, i.e., the plot of the lateral force against the longitudinal force for different slip angles and for longitudinal slip, and the Gough plot, i.e., the diagram of the self-aligning torque versus the lateral force. The transient analysis allows obtaining the dynamic behavior of the tire for any maneuver given to the wheel. Among its outputs there are the relaxation length and the dynamic forces and torque transmitted to the suspension of the vehicle. Combining the tire model with the vehicle model it is possible to perform any kind of maneuver such as overtaking, changing of lane and steering pad at growing speed with or without braking, or accelerating. Therefore the 3D tire model can be seen as a powerful tool to optimize the tire characteristics through a sensitivity analysis performed with tire and vehicle models linked to each other without the need of building prototypes. Some preliminary comparisons with experimental data have been carried out.


DYNA ◽  
2020 ◽  
Vol 87 (212) ◽  
pp. 209-218
Author(s):  
Diego Sequera Gutierrez ◽  
Luis Felipe Solano Rodríguez ◽  
Edgar Eduardo Muñoz Díaz ◽  
Yezid Alexander Alvarado Vargas ◽  
Jesús Daniel Villalba Morales ◽  
...  

Updating structural model is a knowledge field that have been studied in the last decades to guarantee the reliability on the model defined to represent the behavior of a structure, but generally implies the use of different software to carry out the different parts of the process. This paper presents the updating of the finite element model of a curve-alignment reinforced concrete bridge located near to the city of Ubaté in Colombia by using the optimization tool available in software Ansys and ambient vibration measurements. The use of such type of information avoids to carry out forced-vibration test, which affect the normal operation of the bridge. The objective function corresponds to the minimization of the error between analytical and experimental natural frequencies of the bridge. The design variables correspond to the material properties of the concrete and the elastomeric bearings. Results show that the error was decreased to less than 2%. The sensibility analysis allowed to determine which variables are more sensible to affect the natural frequencies in the structure.


Sign in / Sign up

Export Citation Format

Share Document