scholarly journals Acoustic emission sensor effect and waveform evolution during fatigue crack growth in thin metallic plate

2017 ◽  
Vol 29 (7) ◽  
pp. 1275-1284 ◽  
Author(s):  
Md Yeasin Bhuiyan ◽  
Bin Lin ◽  
Victor Giurgiutiu

In this article, the effect of the acoustic emission sensor on the acoustic emission waveforms from fatigue crack growth in a thin aerospace specimen is presented. In situ acoustic emission fatigue experiments were performed on the test coupons made of aircraft grade aluminum plate. Commercial Mistras S9225 acoustic emission sensor and piezoelectric wafer active sensor were used to capture the acoustic emission waveforms from the fatigue crack. It has been shown that the piezoelectric wafer active sensor transducer successfully captured the fatigue crack–related acoustic emission waveforms in the thin plate. The piezoelectric wafer active sensor transducer seems to capture more frequency information of the acoustic emission waveform than the conventional acoustic emission sensor in this particular application. We have also shown the evolution of the acoustic emission waveforms as the fatigue crack grows. The signatures of the fatigue crack growth were captured by the evolution of the acoustic emission waveforms. This waveform evolution is highly related to the physical boundary conditions of the cracks as well as the fatigue crack growth mechanism. The fatigue loading and acoustic emission measurement were synchronized using the same acoustic emission instrumentation. This synchronization provided the exact load level when the acoustic emission signals had occurred during the fatigue crack growth.

2019 ◽  
Vol 9 (11) ◽  
pp. 2187 ◽  
Author(s):  
Ángela Angulo ◽  
Jialin Tang ◽  
Ali Khadimallah ◽  
Slim Soua ◽  
Cristinel Mares ◽  
...  

Offshore installations are subject to perpetual fatigue loading and are usually very hard to inspect. Close visual inspection from the turret is usually too hazardous for divers and is not possible with remotely operated vehicles (ROVs) because of the limited access. Conventional nondestructive techniques (NDTs) have been used in the past to carry out inspections of mooring chains, floating production storage and offloading systems (FPSOs), and other platforms. Although these have been successful at detecting and assessing fatigue cracks, the hazardous nature of the operations calls for remote techniques that could be applied continuously to identify damage initiation and progress. The aim of the present work is to study the capabilities of acoustic emission (AE) as a monitoring tool to detect fatigue crack initiation and propagation in mooring chains. A 72-day large-scale experiment was designed for this purpose. A detailed analysis of the different AE signal time domain features was not conclusive, possibly due to the high level of noise. However, the frequency content of the AE signals offers a promising indication of fatigue crack growth.


2006 ◽  
Vol 13-14 ◽  
pp. 23-28 ◽  
Author(s):  
C.K. Lee ◽  
Jonathan J. Scholey ◽  
Paul D. Wilcox ◽  
M.R. Wisnom ◽  
Michael I. Friswell ◽  
...  

Acoustic emission (AE) testing is an increasingly popular technique used for nondestructive evaluation (NDE). It has been used to detect and locate defects such as fatigue cracks in real structures. The monitoring of fatigue cracks in plate-like structures is critical for aerospace industries. Much research has been conducted to characterize and provide quantitative understanding of the source of emission on small specimens. It is difficult to extend these results to real structures as most of the experiments are restricted by the geometric effects from the specimens. The aim of this work is to provide a characterization of elastic waves emanating from fatigue cracks in plate-like structures. Fatigue crack growth is initiated in large 6082 T6 aluminium alloy plate specimens subjected to fatigue loading in the laboratory. A large specimen is utilized to eliminate multiple reflections from edges. The signals were recorded using both resonant and nonresonant transducers attached to the surface of the alloy specimens. The distances between the damage feature and sensors are located far enough apart in order to obtain good separation of guided-wave modes. Large numbers of AE signals are detected with active fatigue crack propagation during the experiment. Analysis of experimental results from multiple crack growth events are used to characterize the elastic waves. Experimental results are compared with finite element predictions to examine the mechanism of AE generation at the crack tip.


2016 ◽  
Vol 126 ◽  
pp. 107-116 ◽  
Author(s):  
M. Nani Babu ◽  
C.K. Mukhopadhyay ◽  
G. Sasikala ◽  
Shaju K. Albert ◽  
A.K. Bhaduri ◽  
...  

Author(s):  
Koji Gotoh ◽  
Keisuke Harada ◽  
Yosuke Anai

Fatigue life estimation for planar cracks, e.g. part-through surface cracks or embedded cracks is very important because most of fatigue cracks found in welded built-up structures show planar crack morphologies. Fatigue crack growth behaviour of an embedded crack in welded joints is investigated in this study. The estimation procedure of crack shape evolution for an embedded crack is introduced and validation of the estimation procedure of fatigue crack growth based on the numerical simulation of fatigue crack growth with EDS concept for an embedded crack is performed. The validity of the proposed shape evolution estimation method and the fatigue crack growth simulation based on the fracture mechanics approach with EDS concept are confirmed.


Author(s):  
Raghu V. Prakash ◽  
Manuel Thomas

Abstract Results of online acoustic emission (AE) monitoring during fatigue crack growth rate (FCGR) experiments on a stainless steel SS 316 LN are presented in this paper. Two specimen geometries — viz., standard compact tension (C(T)) specimens as well as side-grooved C(T) specimens were considered for experiments at ambient temperature and at 600°C (873K). There is a good correspondence between crack length increment and the increase in AE cumulative count and cumulative energy during the experiments. The side grove introduced on the thickness direction of the test specimen constrains the plastic zone ahead of the crack tip, thereby enforcing plane strain conditions at the crack. Reduced AE activity at initial stages of crack growth was observed for side grooved samples. The transition to Stage-II crack growth was observed using acoustic emission (AE) technique which otherwise was not visible from the fatigue crack growth plot. The work further attempts to correlate the AE parameters obtained during elevated temperature (873K) fatigue crack growth in stainless steel. For the purpose of acquiring AE signals outside the heated zone, a waveguide was used to transmit the acoustic waves from the specimen at high temperature. A correlation between crack advance and AE parameters was obtained from the elevated temperature tests.


Sign in / Sign up

Export Citation Format

Share Document