active sensor
Recently Published Documents


TOTAL DOCUMENTS

280
(FIVE YEARS 62)

H-INDEX

31
(FIVE YEARS 4)

Sensors ◽  
2021 ◽  
Vol 21 (24) ◽  
pp. 8473
Author(s):  
Luke Horstman ◽  
Jean-Claude Diels

A method to increase the sensitivity of an intracavity differential phase measurement that is not made irrelevant by a larger increase of noise is explored. By introducing a phase velocity feedback by way of a resonant dispersive element in an active sensor in which two ultrashort pulses circulate, it is shown that the measurement sensitivity is elevated without significantly increasing the Petermann excess noise factor. This enhancement technique has considerable implications for any optical phase based measurement; from gyroscopes and accelerometers to magnetometers and optical index measurements. Here we describe the enhancement method in the context of past dispersion enhancement studies including the recent work surrounding non-Hermitian quantum mechanics, justify the method with a theoretical framework (including numerical simulations), and propose practical applications.


Author(s):  
Jonnas De Marchi ◽  
Ziany Brandao ◽  
Thiago Machado ◽  
Luciano Shiratsuchi

Variable nitrogen(N) rate fertilization based on remote sensing is challenging for cotton production fields, but active crop canopy sensors (ACS) appear as an alternative to make this practical on farm since they can be used at night as well. The crop spatial variability in inherent in crop production in general, and not on-the-go solutions can be used with this type of active sensing technologies. Thus, the purpose of this study was to investigate the potential of two vegetation indices to identify the N requirement variability for cotton plants and to develop prototype algorithms for topdressing nitrogen variable rate on commercial and experimental areas, using the N-sufficiency methodology based on virtual reference. The concept of virtual reference is to use a histogram to characterize the vegetation index of properly fertilized plants without establishing an N-rich plot as a reference strip. The experiment was conducted in strips with four different N rates (0, 45, 90 and 180 kgN ha-1) during the 2015, 2016, 2017 and 2018 crop seasons in partnership with large cotton producers in Mato Grosso and also in experimental area of Embrapa Agrosilvopastoral. Two algorithms for variable rate nitrogen fertilization for cotton were developed, namely: 1) N recommendation algorithm for cotton in commercial production system: N rate (kg.N ha-1) = -234.79 ISN2 + 49,879 ISN + 195.15; R² = 0.97; and 2) for cotton grown in experimental area: N dose (kgN ha-1) = -174.73 ISN2 - 107.21 ISN + 306.78; R² = 0.94.


2021 ◽  
Vol 13 (14) ◽  
pp. 2720
Author(s):  
Shoubin Chen ◽  
Baoding Zhou ◽  
Changhui Jiang ◽  
Weixing Xue ◽  
Qingquan Li

LiDAR (light detection and ranging), as an active sensor, is investigated in the simultaneous localization and mapping (SLAM) system. Typically, a LiDAR SLAM system consists of front-end odometry and back-end optimization modules. Loop closure detection and pose graph optimization are the key factors determining the performance of the LiDAR SLAM system. However, the LiDAR works at a single wavelength (905 nm), and few textures or visual features are extracted, which restricts the performance of point clouds matching based loop closure detection and graph optimization. With the aim of improving LiDAR SLAM performance, in this paper, we proposed a LiDAR and visual SLAM backend, which utilizes LiDAR geometry features and visual features to accomplish loop closure detection. Firstly, the bag of word (BoW) model, describing the visual similarities, was constructed to assist in the loop closure detection and, secondly, point clouds re-matching was conducted to verify the loop closure detection and accomplish graph optimization. Experiments with different datasets were carried out for assessing the proposed method, and the results demonstrated that the inclusion of the visual features effectively helped with the loop closure detection and improved LiDAR SLAM performance. In addition, the source code, which is open source, is available for download once you contact the corresponding author.


Materials ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3494
Author(s):  
Deivamoney Josephine Selvarani Ruth ◽  
Kaliaperumal Dhanalakshmi ◽  
Seung-Bok Choi

This paper presents an active accelerator pedal system based on an integrated sensor and actuator using shape memory alloy (SMA) for speed control and to create haptics in the accelerator pedal. A device named sensaptics is developed with a pair of bi-functional SMA wires instrumented in a synergistic configuration function as an active sensor for positioning the accelerator pedal (pedal position sensing) to control the vehicle speed through electronic throttle and as a variable impedance actuator to generate active force (haptic) feedback to the driver. The reaction force emanated from the pedal alerts the driver and takes appropriate control action by slowing down the vehicle, in harmony with the road’s condition. The design is developed as a proof-of-concept device and is tested and evaluated in a real-time common rail diesel system for rail pressure regulation and over speeding tests, and the responses and performances are found to be promising.


Author(s):  
Seung-Hee Ham ◽  
Seiji Kato ◽  
Fred G. Rose ◽  
Norman G. Loeb ◽  
Kuan-Man Xu ◽  
...  

AbstractCloud macrophysical changes over the Pacific from 2007 to 2017 are examined by combining CALIOP and CloudSat (CALCS) active-sensor measurements, and these are compared with MODIS passive-sensor observations. Both CALCS and MODIS capture well-known features of cloud changes over the Pacific associated with meteorological conditions during El Niño-Southern Oscillation (ENSO) events. For example, mid (cloud tops at 3–10 km) and high (cloud tops at 10–18 km) cloud amounts increase with relative humidity (RH) anomalies. However, a better correlation is obtained between CALCS cloud volume and RH anomalies, confirming more accurate CALCS cloud boundaries than MODIS. Both CALCS and MODIS show that low cloud (cloud tops at 0–3 km) amounts increase with EIS and decrease with SST over the eastern Pacific, consistent with earlier studies. It is also further shown that the low cloud amounts do not increase with positive EIS anomalies if SST anomalies are positive. While similar features are found between CALCS and MODIS low cloud anomalies, differences also exist. First, compared to CALCS, MODIS shows stronger anti-correlation between low and mid/high cloud anomalies over the central and western Pacific, which is largely due to the limitation in detecting overlapping clouds from passive MODIS measurements. Second, compared to CALCS, MODIS shows smaller impacts of mid and high clouds on the low troposphere (< 3 km). The differences are due to the underestimation of MODIS cloud layer thicknesses of mid and high clouds.


ACS Nano ◽  
2021 ◽  
Author(s):  
Chan Wang ◽  
Xuecheng Qu ◽  
Qiang Zheng ◽  
Ying Liu ◽  
Puchuan Tan ◽  
...  

2021 ◽  
Vol 13 (11) ◽  
pp. 2081
Author(s):  
Elisa Adirosi ◽  
Mario Montopoli ◽  
Alessandro Bracci ◽  
Federico Porcù ◽  
Vincenzo Capozzi ◽  
...  

The high relevance of satellites for collecting information regarding precipitation at global scale implies the need of a continuous validation of satellite products to ensure good data quality over time and to provide feedback for updating and improving retrieval algorithms. However, validating satellite products using measurements collected by sensors at ground is still a challenging task. To date, the Dual-frequency Precipitation Radar (DPR) aboard the Core Satellite of the Global Precipitation Measurement (GPM) mission is the only active sensor able to provide, at global scale, vertical profiles of rainfall rate, radar reflectivity, and Drop Size Distribution (DSD) parameters from space. In this study, we compare near surface GPM retrievals with long time series of measurements collected by seven laser disdrometers in Italy since the launch of the GPM mission. The comparison shows limited differences in the performances of the different GPM algorithms, be they dual- or single-frequency, although in most cases, the dual-frequency algorithms present the better performances. Furthermore, the agreement between satellite and ground-based estimates depends on the considered precipitation variable. The agreement is very promising for rain rate, reflectivity factor, and the mass-weighted mean diameter (Dm), while the satellite retrievals need to be improved for the normalized gamma DSD intercept parameter (Nw).


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
C. Guardiola ◽  
A. Márquez ◽  
M. C. Jiménez-Ramos ◽  
J. García López ◽  
A. Baratto-Roldán ◽  
...  

AbstractThis work presents the first tests performed with radiochromic films and a new Micro‒Opto‒Electro-Mechanical system (MOEMS) for in situ dosimetry evaluation in radiotherapy in real time. We present a new device and methodology that overcomes the traditional limitation of time-delay in radiochromic film analysis by turning a passive detector into an active sensor. The proposed system consists mainly of an optical sensor based on light emitting diodes and photodetectors controlled by both customized electronic circuit and graphical user interface, which enables optical measurements directly. We show the first trials performed in a low‒energy proton cyclotron with this MOEMS by using gafchromic EBT3 films. Results show the feasibility of using this system for in situ dose evaluations. Further adaptation is ongoing to develop a full real‒time active detector by integrating MOEM multi‒arrays and films in flexible printed circuits. Hence, we point to improve the clinical application of radiochromic films with the aim to optimize radiotherapy treatment verifications.


CCS Chemistry ◽  
2021 ◽  
pp. 1-25
Author(s):  
Youheng Zhang ◽  
Qi Wang ◽  
Zhirong Zhu ◽  
Weijun Zhao ◽  
Chenxu Yan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document