Evaluation of Multiaxial Fatigue Life Prediction Model based on Critical Plane for Notched Specimens

2008 ◽  
Vol 17 (5) ◽  
pp. 419-445 ◽  
Author(s):  
G. Rashed ◽  
R. Ghajar ◽  
S.J. Hashemi
1994 ◽  
Author(s):  
J.C.R. Plácido ◽  
J.J. Azar ◽  
J.R. Sorem ◽  
Franz Kessler ◽  
S.M. Tipton

Metals ◽  
2019 ◽  
Vol 9 (2) ◽  
pp. 180 ◽  
Author(s):  
Jialiang Wang ◽  
Dasheng Wei ◽  
Yanrong Wang ◽  
Xianghua Jiang

In this paper, the viewpoint that maximum resolved shear stress corresponding to the two slip systems in a nickel-based single crystal high-temperature fatigue experiment works together was put forward. A nickel-based single crystal fatigue life prediction model based on modified resolved shear stress amplitude was proposed. For the four groups of fatigue data, eight classical fatigue life prediction models were compared with the model proposed in this paper. Strain parameter is poor in fatigue life prediction as a damage parameter. The life prediction results of the fatigue life prediction model with stress amplitude as the damage parameter, the fatigue life prediction model with maximum resolved shear stress in 30 slip directions as the damage parameter, and the McDiarmid (McD) model, are better. The model proposed in this paper has higher life prediction accuracy.


2021 ◽  
Vol 143 ◽  
pp. 105993
Author(s):  
Bingfeng Zhao ◽  
Liyang Xie ◽  
Lei Wang ◽  
Zhiyong Hu ◽  
Song Zhou ◽  
...  

2007 ◽  
Vol 460-461 ◽  
pp. 195-203 ◽  
Author(s):  
Chang Yeol Jeong ◽  
Jung-Chan Bae ◽  
Chang-Seog Kang ◽  
Jae-Ik Cho ◽  
Hyeon-Taek Son

2020 ◽  
Vol 12 (6) ◽  
pp. 168781402093533
Author(s):  
Li Bin ◽  
Liu Jianhui ◽  
Wang Xiuli

The established linear fatigue life prediction model based on the Miner rule has been widely applied to fatigue life prediction under constant amplitude uniaxial and multiaxial loading. Considering the physical significance of crack formation and propagation, a multiaxial equivalent linear fatigue life prediction model is put forward based on Miner rule and critical plane method under constant amplitude loading. The essence of this approach is that the equivalent strain, which consists of the shear strain and normal strain on the critical plane, replaces the relevant parameter of uniaxial nonlinear fatigue damage model. The principal axes of stress/strain rotate under non-proportional loading. Meanwhile, the microstructure of material and slip systems change, which lead to additional hardening effect. The ratio of cyclic yield stress to static yield stress is used to represent the cyclic hardening capacity of material, and the influence of phase difference and loading condition on the non-proportional hardening effect is considered. The multiaxial fatigue life is predicted using equivalent stain approach, maximum shear stain amplitude model, CXH model, and equivalent multiaxial liner model under proportional and/or non-proportional loading. The smooth and notched fatigue specimens of four kinds of materials (Q235B steel, titanium alloy TC4, Haynes 188, and Mod.9Cr-1Mo steel) are used in the multiaxial fatigue experiments to verify the proposed model. The predicted results of these materials are compared with the test results, and the results show that these four models can achieve good effect under proportional loading, but the proposed model performs better than the other three models under non-proportional loading. Meanwhile, it also verifies that the proposed enhancement factor can reflect the influence of phase difference and material properties on additional hardening.


Sign in / Sign up

Export Citation Format

Share Document