critical plane approach
Recently Published Documents


TOTAL DOCUMENTS

79
(FIVE YEARS 14)

H-INDEX

19
(FIVE YEARS 2)

2021 ◽  
Vol 10 (23) ◽  
pp. 5692
Author(s):  
Victor Roda-Casanova ◽  
Antonio Pérez-González ◽  
Álvaro Zubizarreta-Macho ◽  
Vicente Faus-Matoses

This article describes a numerical procedure for estimating the fatigue life of NiTi endodontic rotary files. An enhanced finite element model reproducing the interaction of the endodontic file rotating inside the root canal was developed, which includes important phenomena that allowed increasing the degree of realism of the simulation. A method based on the critical plane approach was proposed for extracting significant strain results from finite element analysis, which were used in combination with the Coffin–Manson relation to predict the fatigue life of the NiTi rotary files. The proposed procedure is illustrated with several numerical examples in which different combinations of endodontic rotary files and root canal geometries were investigated. By using these analyses, the effect of the radius of curvature and the angle of curvature of the root canal on the fatigue life of the rotary files was analysed. The results confirm the significant influence of the root canal geometry on the fatigue life of the NiTi rotary files and reveal the higher importance of the radius of curvature with respect to the angle of curvature of the root canal.


2020 ◽  
Vol 138 ◽  
pp. 105677 ◽  
Author(s):  
Sabrina Vantadori ◽  
Andrea Carpinteri ◽  
Raimondo Luciano ◽  
Camilla Ronchei ◽  
Daniela Scorza ◽  
...  

2020 ◽  
Vol 26 ◽  
pp. 106-112
Author(s):  
Sabrina Vantadori ◽  
Andrea Carpinteri ◽  
Camilla Ronchei ◽  
Daniela Scorza ◽  
Andrea Zanichelli ◽  
...  

Metals ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 978
Author(s):  
Alejandro S. Cruces ◽  
Pablo Lopez-Crespo ◽  
Stefano Bressan ◽  
Takamoto Itoh ◽  
Belen Moreno

In this work, the multiaxial fatigue behaviour of 316 and 304 stainless steel was studied. The study was based on the critical plane approach which is based on observations that cracks tend to nucleate and grow in specific planes. Three different critical plane models were employed to this end, namely Fatemi–Socie (FS), Smith–Watson–Topper (SWT) and the newly proposed Sandip–Kallmeyer–Smith (SKS) model. The study allowed equi-biaxial stress state, mean strain and non–proportional hardening effects to be taken into consideration. Experimental tests including different combinations of tension, torsion and inner pressure were performed and were useful to identify the predominant failure mode for the two materials. The results also showed that the SKS damage parameter returned more conservative results than FS with lower scatter level in both materials, with prediction values between FS and SWT.


Materials ◽  
2019 ◽  
Vol 12 (14) ◽  
pp. 2310 ◽  
Author(s):  
Krzysztof Kluger ◽  
Roland Pawliczek

The paper reports on the results of a comparison involving mathematical models applied for fatigue life calculations where the mean load value is taken into account. Several models based on the critical plane approach and energy density parameter were tested and analyzed. A fatigue test results for three types of materials are presented in this paper. The specimens were subjected to bending, torsion and a combination of bending with torsion with mean value of the load. Analysis of the calculation results show that the best fatigue life estimations are obtained by using models that are sensitive to the changes of material behavior under fatigue loading in relation to the specified number of cycles of the load.


Author(s):  
Jürgen Rudolph ◽  
Guy Baylac ◽  
Ralf Trieglaff ◽  
Rüdiger Gawlick ◽  
Michael Krämer ◽  
...  

Abstract The European Pressure Vessel Standard EN 13445 (harmonized Standard acc. to PED 2014/68/EU) provides in its Part 3 (Design) a simplified method for fatigue assessment (Clause 17) and a detailed method of fatigue assessment (Clause 18). While the new revision of Clause 17 has already been adopted, Clause 18 “Detailed Assessment of Fatigue Life” is now available as a consolidated revision in inquiry phase. This major and comprehensive revision has been developed within the framework of the European working group CEN/TC 54/WG 53 – Design methods and constitutes a crucial step towards a modern and user-friendly engineering fatigue assessment method. The overall structure and amendments of Clause 18 are to be presented. All these amendments aim at a significant increase in user friendliness and clear guidelines for application. The following items are to be mentioned in that context: • Fatigue assessment of welded components based on structural stress and structural hot-spot stress approaches, • Detailed guidelines for determining relevant stresses and stress ranges, • Cycle counting proposals in the context of the fatigue assessment method including a critical plane approach. The fatigue assessment of welded components is separated from the fatigue assessment of un-welded parts as it has already been done in previous versions with respective methodological differences. Stress analyses for clause 18 are usually based on detailed finite element analyses (FEA). As an essential amendment for the user, the determination of structural stress ranges for the fatigue assessment of welds is further detailed in a new appropriate annex. Different applicable methods for the determination of structural stresses are explained in connection with the requirements of the finite element models and analyses. The cycle counting issue is comprehensively treated in the context of different design and operation situations (design transients, operational stress-time-histories). The description is detailed towards a critical plane approach. Detailed proposals for implementation in an algorithmic programming framework are given making the described methods ready to use.


2019 ◽  
Vol 54 (5-6) ◽  
pp. 310-319
Author(s):  
Meng-Fei Hao ◽  
Shun-Peng Zhu ◽  
Ding Liao

Based on critical plane approach, this article develops a new damage parameter through combing the equivalent strain energy aspect for multiaxial fatigue analysis, which includes no additional fitted parameters and overcomes the deficiency of using only equivalent stress/strain criterion separately under multiaxial loadings. Then, experimental data of GH4169, TC4, Al 7050-T7451 alloys under different loading conditions are applied for model validation and comparison with other four models. Results indicate that the proposed damage parameter yields better multiaxial fatigue life predictions than others.


Sign in / Sign up

Export Citation Format

Share Document