Steady-state energy release rate for fiber/matrix interface debond growth in unidirectional composites

2015 ◽  
Vol 26 (4) ◽  
pp. 560-587 ◽  
Author(s):  
Andrejs Pupurs ◽  
Janis Varna
2020 ◽  
Vol 54 (21) ◽  
pp. 3021-3034
Author(s):  
Luca Di Stasio ◽  
Janis Varna ◽  
Zoubir Ayadi

Models of Representative Volume Elements of cross-ply laminates with different geometric configurations and damage states are studied. Debond growth is characterized by the estimation of the Mode I and Mode II Energy Release Rate using the Virtual Crack Closure Technique. It is found that the presence of the [Formula: see text] interface and the thickness of the [Formula: see text] layer has no effect, apart from laminates with ultra-thin [Formula: see text] plies where it is however modest. The present analysis supports the claim that debond growth is not affected by the ply-thickness effect.


2019 ◽  
Author(s):  
Luca Di Stasio ◽  
Janis Varna ◽  
Zoubir Ayadi

Models of Representative Volume Elements (RVEs) of cross-ply laminates with different geometric configurations and damage states are studied. Debond growth is characterized by the estimation of the Mode I and Mode II Energy Release Rate (ERR) using the Virtual Crack Closure Technique (VCCT). It is found that the presence of the 0° /90° interface and the thickness of the 0° layer have no effect, apart from laminates with ultra-thin 90° plies where it is however modest. The present analysis supports the claim that debond growth is not affected by the ply-thickness effect.


2001 ◽  
Author(s):  
Victor Birman ◽  
Larry W. Byrd

Abstract The paper elucidates the methods of estimating damping in ceramic matrix composites (CMC) with matrix cracks. Unidirectional composites with bridging matrix cracks and cross-ply laminates with tunneling cracks in transverse layers and bridging cracks in longitudinal layers are considered. It is shown that bridging matrix cracks may dramatically increase damping in unidirectional CMC due to a dissipation of energy along damaged sections of the fiber-matrix interface (interfacial friction). Such friction is absent in the case of tunneling cracks in transverse layers of cross-ply laminates where the changes in damping due to a degradation of the stiffness remain small. However, damping in cross-ply laminates abruptly increases if bridging cracks appear in the longitudinal layers.


Sign in / Sign up

Export Citation Format

Share Document