Real-Time Speech Workload Estimation for Intelligent Human- Machine Systems

Author(s):  
Julian Fortune ◽  
Jamison Heard ◽  
Julie A. Adams

Demanding task environments (e.g., supervising a remotely piloted aircraft) require performing tasks quickly and accurately; however, periods of low and high operator workload can decrease task performance. Intelligent modulation of the system’s demands and interaction modality in response to changes in operator workload state may increase performance by avoiding undesirable workload states. This system requires real- time estimation of each workload component (i.e., cognitive, physical, visual, speech, and auditory) to adapt the correct modality. Existing workload systems estimate multiple workload components post-hoc, but none estimate speech workload, or function in real-time. This manuscript presents an algorithm to estimate speech workload and mitigate undesirable workload states in real-time. The adaptive system uses the algorithm’s estimates to mitigate under/overload, a crucial step towards adaptive machine-human systems.

2021 ◽  
Author(s):  
Paraskevas Chatzithanos ◽  
Grigoris Nikolaou ◽  
Rustam Stolkin ◽  
Manolis Chiou

Author(s):  
Jamison Heard ◽  
Julian Fortune ◽  
Julie A. Adams

Performing tasks quickly and accurately in dynamic and intense environments is critical, such as supervising a remotely piloted aircraft; however, these environments contain periods of low and high workload, which can decrease task performance. A system capable of intelligently adapting its interaction modality based on the human’s workload state may mitigate these undesirable workload states: underload and overload. Such a system requires mechanisms to determine accurately the human’s overall workload state and each workload component state (i.e., cognitive, physical, visual, speech, and auditory) in order to understand the current workload state’s underlying cause effectively. Existing work estimates multiple workload components, but no method estimates speech workload. This manuscript presents an algorithm for accurately estimating a human’s speech workload level using methods suitable for real-time workload assessment. The algorithm is an essential component to future adaptive human-machine interfaces.


2020 ◽  
Vol 86 (4) ◽  
pp. 61-65
Author(s):  
M. V. Abramchuk ◽  
R. V. Pechenko ◽  
K. A. Nuzhdin ◽  
V. M. Musalimov

A reciprocating friction machine Tribal-T intended for automated quality control of the rubbing surfaces of tribopairs is described. The distinctive feature of the machine consists in implementation of the forced relative motion due to the frictional interaction of the rubbing surfaces fixed on the drive and conjugate platforms. Continuous processing of the signals from displacement sensors is carried out under conditions of continuous recording of mutual displacements of loaded tribopairs using classical approaches of the theory of automatic control to identify the tribological characteristics. The machine provides consistent visual real time monitoring of the parameters. The MATLAB based computer technologies are actively used in data processing. The calculated tribological characteristics of materials, i.e., the dynamic friction coefficient, damping coefficient and measure of the surface roughness, are presented. The tests revealed that a Tribal-T reciprocating friction machine is effective for real-time study of the aforementioned tribological characteristics of materials and can be used for monitoring of the condition of tribo-nodes of machines and mechanisms.


2013 ◽  
Vol 39 (10) ◽  
pp. 1722
Author(s):  
Zhao-Wei SUN ◽  
Wei-Chao ZHONG ◽  
Shi-Jie ZHANG ◽  
Jian ZHANG

2021 ◽  
Vol 602 ◽  
pp. 120624
Author(s):  
Reza Kamyar ◽  
David Lauri Pla ◽  
Anas Husain ◽  
Giuseppe Cogoni ◽  
Zilong Wang

IEEE Access ◽  
2021 ◽  
pp. 1-1
Author(s):  
Ujjwol Tamrakar ◽  
David A. Copp ◽  
Tu Nguyen ◽  
Timothy M. Hansen ◽  
Reinaldo Tonkoski

2018 ◽  
Vol 51 (15) ◽  
pp. 1062-1067 ◽  
Author(s):  
Mojtaba Sharifzadeh ◽  
Mario Pisaturo ◽  
Arash Farnam ◽  
Adolfo Senatore

Sign in / Sign up

Export Citation Format

Share Document