Effects of Mild Hypothermia on Metabolic Disturbances in Fetal Hippocampal Slices After Oxygen/Glucose Deprivation Depend on Depth and Time Delay of Cooling

2001 ◽  
Vol 8 (4) ◽  
pp. 198-205 ◽  
Author(s):  
Yves Garnier ◽  
Doris Pfeiffer ◽  
Arne Jensen ◽  
Richard Berger
2014 ◽  
Vol 4 (1) ◽  
Author(s):  
Xiao-Ya Gao ◽  
Jian-Ou Huang ◽  
Ya-Fang Hu ◽  
Yong Gu ◽  
Shu-Zhen Zhu ◽  
...  

Abstract Co-treatment of neuroprotective reagents may improve the therapeutic efficacy of hypothermia in protecting neurons during ischemic stroke. This study aimed to find promising drugs that enhance the neuroprotective effect of mild hypothermia (MH). 26 candidate drugs were selected based on different targets. Primary cultured cortical neurons were exposed to oxygen-glucose deprivation and reoxygenation (OGD/R) to induce neuronal damage, followed by either single treatment (a drug or MH) or a combination of a drug and MH. Results showed that, compared with single treatment, combination of MH with brain derived neurotrophic factor, glibenclamide, dizocilpine, human urinary kallidinogenase or neuroglobin displayed higher proportion of neuronal cell viability. The latter three drugs also caused less apoptosis rate in combined treatment. Furthermore, co-treatment of those three drugs and MH decreased the level of reactive oxygen species (ROS) and intracellular calcium accumulation, as well as stabilized mitochondrial membrane potential (MMP), indicating the combined neuroprotective effects are probably via inhibiting mitochondrial apoptosis pathway. Taken together, the study suggests that combined treatment with hypothermia and certain neuroprotective reagents provide a better protection against OGD/R-induced neuronal injury.


2013 ◽  
Vol 119 (5) ◽  
pp. 1120-1136 ◽  
Author(s):  
Jia Liu ◽  
Mark R. Segal ◽  
Mark J. S. Kelly ◽  
Jeffrey G. Pelton ◽  
Myungwon Kim ◽  
...  

Abstract Background: Mild brain hypothermia (32°–34°C) after human neonatal asphyxia improves neurodevelopmental outcomes. Astrocytes but not neurons have pyruvate carboxylase and an acetate uptake transporter. 13C nuclear magnetic resonance spectroscopy of rodent brain extracts after administering [1-13C]glucose and [1,2-13C]acetate can distinguish metabolic differences between glia and neurons, and tricarboxylic acid cycle entry via pyruvate dehydrogenase and pyruvate carboxylase. Methods: Neonatal rat cerebrocortical slices receiving a 13C-acetate/glucose mixture underwent a 45-min asphyxia simulation via oxygen–glucose-deprivation followed by 6 h of recovery. Protocols in three groups of N = 3 experiments were identical except for temperature management. The three temperature groups were: normothermia (37°C), hypothermia (32°C for 3.75 h beginning at oxygen–-glucose deprivation start), and delayed hypothermia (32°C for 3.75 h, beginning 15 min after oxygen–glucose deprivation start). Multivariate analysis of nuclear magnetic resonance metabolite quantifications included principal component analyses and the L1-penalized regularized regression algorithm known as the least absolute shrinkage and selection operator. Results: The most significant metabolite difference (P < 0.0056) was [2-13C]glutamine’s higher final/control ratio for the hypothermia group (1.75 ± 0.12) compared with ratios for the delayed (1.12 ± 0.12) and normothermia group (0.94 ± 0.06), implying a higher pyruvate carboxylase/pyruvate dehydrogenase ratio for glutamine formation. Least Absolute Shrinkage and Selection Operator found the most important metabolites associated with adenosine triphosphate preservation: [3,4-13C]glutamate—produced via pyruvate dehydrogenase entry, [2-13C]taurine—an important osmolyte and antioxidant, and phosphocreatine. Final principal component analyses scores plots suggested separate cluster formation for the hypothermia group, but with insufficient data for statistical significance. Conclusions: Starting mild hypothermia simultaneously with oxygen–glucose deprivation, compared with delayed starting or no hypothermia, has higher pyruvate carboxylase throughput, suggesting that better glial integrity is one important neuroprotection mechanism of earlier hypothermia.


Sign in / Sign up

Export Citation Format

Share Document